
1

Ανάκληση Πληροφορίας

Information Retrieval

Διδάσκων –
Δημήτριος Κατσαρός

Διάλεξη 2η: 17/02/2014

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 2

Bigger corpora
• Consider N = 1M documents, each with about 1K

terms.
• Avg 6 bytes/term incl spaces/punctuation

• 6GB of data in the documents.
• Say there are m = 500K distinct terms among

these.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 3

Can’t build the matrix
• 500K x 1M matrix has half-a-trillion 0’s and 1’s.
• But it has no more than one billion 1’s.

• matrix is extremely sparse.
• What’s a better representation?

• We only record the 1 positions.
Why?

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 4

Αρχιτεκτονική Μηχανής Αναζήτησης

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 5

Inverted index
• For each term T, we must store a list of all

documents that contain T.
• Do we use an array or a list for this?

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

What happens if the word Caesar
is added to document 14?

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 6

Inverted index
• Linked lists generally preferred to arrays

• Dynamic space allocation
• Insertion of terms into documents easy
• Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings lists
Sorted by docID (more later on why).

Posting

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 7

Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 8

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Indexer steps

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 9

• Sort by terms.
Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Core indexing step.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 10

• Multiple term entries in a
single document are
merged.

• Frequency information is
added.

Term Doc # Term freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Why frequency?
Will discuss later.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 11

• The result is split into a Dictionary file and a
Postings file.

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Coll freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 12

• Where do we pay in storage?

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Coll freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Pointers

Terms

Will quantify
the storage,
later.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 13

The index we just built
• How do we process a query?

• Later - what kinds of queries can we process? Today’s
focus

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 14

Query processing: AND
• Consider processing the query:

Brutus AND Caesar
• Locate Brutus in the Dictionary;

• Retrieve its postings.
• Locate Caesar in the Dictionary;

• Retrieve its postings.
• “Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 15

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

The merge
• Walk through the two postings simultaneously, in

time linear in the total number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar2 8

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 16

Boolean queries: Exact match

• The Boolean Retrieval model is being able to ask a
query that is a Boolean expression:
• Boolean Queries are queries using AND, OR and NOT to join

query terms
• Views each document as a set of words
• Is precise: document matches condition or not.

• Primary commercial retrieval tool for 3 decades.
• Professional searchers (e.g., lawyers) still like Boolean

queries:
• You know exactly what you’re getting.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 17

Example: WestLaw http://www.westlaw.com/

• Largest commercial (paying subscribers) legal search
service (started 1975; ranking added 1992)

• Tens of terabytes of data; 700,000 users
• Majority of users still use boolean queries
• Example query:

• What is the statute of limitations in cases involving the federal
tort claims act?

• LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

• /3 = within 3 words, /S = in same sentence

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 18

Example: WestLaw http://www.westlaw.com/

• Another example query:
• Requirements for disabled people to be able to access a

workplace
• disabl! /p access! /s work-site work-place (employment /3

place

• Note that SPACE is disjunction, not conjunction!
• Long, precise queries; proximity operators;

incrementally developed; not like web search
• Professional searchers often like Boolean search:

• Precision, transparency and control
• But that doesn’t mean they actually work better….

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 19

Boolean queries: More general merges

• Exercise: Adapt the merge for the queries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(x+y) or
what can we achieve?

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 20

Merging
What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT
(Antony OR Cleopatra)
• Can we always merge in “linear” time?

• Linear in what?
• Can we do better?

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 21

Query optimization

• What is the best order for query processing?
• Consider a query that is an AND of t terms.
• For each of the t terms, get its postings, then AND

them together.

Brutus

Calpurnia

Caesar

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query: Brutus AND Calpurnia AND Caesar

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 22

Query optimization example
• Process in order of increasing freq:

• start with smallest set, then keep cutting further.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

This is why we kept
freq in dictionary

Execute the query as (Caesar AND Brutus) AND Calpurnia.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 23

More general optimization

• e.g., (madding OR crowd) AND (ignoble
OR strife)

• Get freq’s for all terms.
• Estimate the size of each OR by the sum of

its freq’s (conservative).
• Process in increasing order of OR sizes.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 24

Exercise
• Recommend a query

processing order for

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 25

Query processing exercises
• If the query is friends AND romans AND (NOT

countrymen), how could we use the freq of
countrymen?

• Exercise: Extend the merge to an arbitrary
Boolean query. Can we always guarantee
execution in time linear in the total postings size?

• Hint: Begin with the case of a Boolean formula
query: in this, each query term appears only once
in the query.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 26

• What about phrases?
• Stanford University

• Proximity: Find Gates NEAR Microsoft.
• Need index to capture position information in docs. More

later.
• Zones in documents: Find documents with (author

= Ullman) AND (text contains automata).

What’s ahead in IR? Beyond term search

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 27

Evidence accumulation
• 1 vs. 0 occurrence of a search term

• 2 vs. 1 occurrence
• 3 vs. 2 occurrences, etc.
• Usually more seems better

• Need term frequency information in docs

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 28

Ranking search results
• Boolean queries give inclusion or exclusion of docs.
• Often we want to rank/group results

• Need to measure proximity from query to each doc.
• Need to decide whether docs presented to user are

singletons, or a group of docs covering various aspects of
the query.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 29

IR vs. databases:
Structured vs unstructured data

• Structured data tends to refer to information in
“tables”

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 30

Unstructured data
• Typically refers to free text
• Allows

• Keyword queries including operators
• More sophisticated “concept” queries e.g.,

• find all web pages dealing with drug abuse

• Classic model for searching text documents

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 31

Semi-structured data
• In fact almost no data is “unstructured”
• E.g., this slide has distinctly identified zones such

as the Title and Bullets
• Facilitates “semi-structured” search such as

• Title contains data AND Bullets contain search

… to say nothing of linguistic structure

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 32

More sophisticated semi-structured
search
• Title is about Object Oriented Programming AND

Author something like stro*rup
• where * is the wild-card operator
• Issues:

• how do you process “about”?
• how do you rank results?

• The focus of XML search.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 33

Clustering and classification
• Given a set of docs, group them into clusters based

on their contents.
• Given a set of topics, plus a new doc D, decide

which topic(s) D belongs to.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 34

The Web and its challenges

• Unusual and diverse documents
• Unusual and diverse users, queries,

information needs
• Beyond terms, exploit ideas from social

networks
• link analysis, clickstreams ...

• How do search engines work? And how can
we make them better?

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 35

More sophisticated information retrieval

• Cross-language information retrieval
• Question answering
• Summarization
• Text mining
• …

