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Introduction 
 
This note contains a brief introduction and tutorial on the spatial regression functionality 
contained in the R package “spdep” developed by Roger Bivand and collaborators. No 
previous knowledge of R is assumed, although the more you know, the more you can 
exploit the powerful features of spdep and customize it to your needs. Detailed 
information on the data and functions in the spdep package is contained in the spdep help 
file on which much of these notes are based. To get started with R, the document “An 
Introduction to R” by Venables, Smith et al is highly recommended. The specific 
illustrations will be for a Windows platform, although it should be noted that R is cross-
platform and runs equally well on Unix/Linux and MacOS. 
 
Preliminaries 
 
This note uses the latest version of R, R1.7.0. You can download the “base” installation 
from http://cran.r-project.org/. Specifically, download the file rw1070.exe and double 
click to go through the installation procedure. This will install the R program as well as a 
basic set of packages. You will also need the spdep package. The latest version of spdep 
is 0.1-10 (4/29/03). Either download the binaries directly (as the spdep.zip file from the 
“contributed” directory) or download the source, index and pdf manual from the CRAN 
package sources directory.  
 
Note: CRAN does not always have the latest version of spdep as a binary for windows. 
You can always find that at http://spatial.nhh.no/R/spdep/ (don’t forget the last slash) as 
well as some other late breaking stuff in the archive main page http://spatial.nhh.no/R/ . 
 
In Windows, the easiest way to start R is to create a working directory and change the 
properties of the R shortcut icon to start in that directory. For example, first right click the 
R icon and select Properties, as in Figure 1. Next enter you working directory as the 
“Start In” property. In Figure 2, this is set to C:\Stats\work, but you should specify the 
full pathname for the working directory on your system. Put any file that needs to be read 
in by R, or any file with R code to run (“source”) in this directory to minimize problems 
with unrecognized paths. 
 
Installing the Package 
 
You can either download the spdep.zip file, or install the package directly from within R. 
Double click on the R icon to start the program. In the Packages menu, select: 
  
Packages > Install package from CRAN
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Figure 1. R Properties 
 
 

 
 

Figure 2. Starting Directory. 
 



 3

select spdep from the list, R takes care of the rest. Alternatively, if you have the spdep.zip 
file downloaded (with the latest version), use: 
 
Packages > Install package from local zip file

Use the open file dialog to locate spdep.zip. Finally, make sure you have the latest 
version, either manually or using the menu: 
 
Packages > Update packages from CRAN

 
If you also want the source code to the R and c functions used in the package, download 
the file spdep.0.1-10.tar.gz from the package source archive and extract the files in the R 
and src directories. Be careful when you extract the R source files since the binary spdep 
file will be overwritten by the source file. Make sure the binary is there (if necessary, 
reinstall from spdep.zip, the source files won’t be touched by this procedure). 
 
Launching spdep 
 
To access the functionality and data sets in spdep, it must be “loaded”. In the windows 
menu, use: 
 
Packages > Load Package

and select spdep from the list, or from the command line: 
 
>library(spdep)

Note, do not use >load(spdep) even though it may seem intuitive.

Ignore the warning (Spatial object identity integrity check: FALSE). 
 
If all goes well, the functions and sample data sets contained in the package are now 
available. To make sure everything works as advertised, enter 
  
>data(columbus)
>summary(columbus)

If you get a series of summary descriptive statistics for the variables in the Columbus 
sample data set, then everything is there. If you get an error message, such as 
 
>Error in summary(columbus) : Object "columbus" not found

then the package was not installed or loaded properly. Make sure all the files are where 
they are supposed to be, or start over.  
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Sample Data Sets 
 
The spdep package contains several sample data sets that have the necessary “spatial” 
information (weights files, coordinates, boundary files) to carry out spatial regression 
analysis. 
 
The sample data sets are (note the data set names are case sensitive): 

•  oldcol: Columbus crime data from Anselin (1988) book 
•  afcon: African conflict data set from Anselin and O’Loughlin (1988) and Anselin 

(1995) 
•  auckland: Auckland infant mortality data set used in Bailey and Gatrell (1985) 
•  boston: data set on Boston house prices originally used by Harrison and Rubinfeld 

(1978) and in spatial models (coordinates added) by Pace et al. (1997) 
•  columbus: Columbus crime data set from Anselin’s web site (same as oldcol, but 

with the observations in a different order) 
•  eire: Irish county data set from Cliff and Ord (1981) and many others 
•  getisord: grid cell remote sensing data from Getis and Ord (1996) 
•  nc.sids: North Carolina county SIDS deaths from Cressie (1993) 
•  used.cars: used car prices for 48 US states used in Hepple (1976). 

 
The tutorial will use the columbus data for illustrations and the boston data set for practice. 
Feel free to experiment with the other data sets as well, particularly afcon, eire and 
used.cars, which have been used to illustrate the properties of spatial regression 
techniques in a number of publications (see the references in the spdep manual). 
 
To make a sample data set active and its contents available, start with 
 
>data(datasetname)

For example, to load the Columbus sample data set in spdep (after the spdep library is 
activated), enter: 
 
>data(columbus)

 
The characteristics of the data set can be checked with a number of R commands: 
 
>columbus

prints the contents as a data frame, with an ID for each row and the variable name as the 
column header; same as 
 
>print(columbus)

Alternatively, 
 
>summary(columbus)
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gives basic descriptive statistics for each variable in the data frame (min, 1st quartile, 
median, mean, 3rd quartile, max) 
 
Once columbus is loaded with the data(columbus) command, five “objects” become 
available – show available objects using >objects() or >ls() – not just the data frame: 

•  columbus: the data frame, contains 22 variables 
•  col.gal.nb: is an object of class “nb”, a list of vectors, one for each spatial unit, and 

containing the sequence numbers of the neighbors (this contiguity file uses the 
queen definition for Columbus) 

•  coords: centroid coordinates that can be used to construct distance-based weights 
•  polys and bbs: the boundary file and bounding boxes for the polygons, used to 

construct contiguity information 
 
Practice 
Load the boston data set and check what objects have been added to your work space. 
Check some basic descriptive statistics with the summary command. If it did not work, 
check the contents of your work space and note the “suprising” name for the data frame 
(the data set) with the boston data. Use this name in the summary command and it should 
work. It is good practice to check this with ls() since the name of the data set and the data 
frame need not be the same. 
 
Running a Regression 
 
R consists of expressions that operate on objects. This interactive approach usually 
requires you to enter a series of expressions where each creates the results of an analysis 
as a new object constructed from an existing object. For example, a linear regression is a 
function that creates an object. Written as a function, it simply prints out some results. 
Written as an assignment to a new object it seems to do nothing, but you can then print, 
summarize or otherwise manipulate the new object. 
 
For example, to run the “classic” Columbus crime regression (of CRIME on INC and 
HOVAL) you need the “linear model” function, lm. You specify the “model” as: 
y ~ x1 + x2 + x3, etc., where y is the dependent variable and the x are the explanatory 
variables. You also should specify the data set (there is a default, but it could give you 
surprising results, it’s good practice to force yourself to specify the data set). If you enter 
lm without an assignment, you get a summary print out, as in: 
 
>lm(CRIME ~ INC + HOVAL, data=columbus)

 
The result is: 
 
Call:
lm(formula = CRIME ~ INC + HOVAL, data = columbus)

Coefficients:
(Intercept) INC HOVAL

68.6190 -1.5973 -0.2739
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In contrast, if you use lm with an assignment, you create a new object, but there is no 
printout. For example, assign the result to the object columbus.lm, as in: 
 
>columbus.lm <- lm( CRIME ~ INC + HOVAL, data=columbus)

 
Nothing happens… However, you did create a new object. To find out what this object 
contains, summarize it: 
 
>summary(columbus.lm)

 
and the detailed results appear 
 
Call:
lm(formula = CRIME ~ INC + HOVAL, data = columbus)

Residuals:
Min 1Q Median 3Q Max

-34.418 -6.388 -1.580 9.052 28.649

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 68.6190 4.7355 14.490 < 2e-16 ***
INC -1.5973 0.3341 -4.780 1.83e-05 ***
HOVAL -0.2739 0.1032 -2.654 0.0109 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 11.43 on 46 degrees of freedom
Multiple R-Squared: 0.5524, Adjusted R-squared: 0.5329
F-statistic: 28.39 on 2 and 46 DF, p-value: 9.34e-09

 
Note that this contains much more information than the printout without the assignment. 
Within R, many functions have a default set of methods, such as print, plot or summary 
that are customized to provide the appropriate information. 
 
Practice 
Run a basic regression of the housing values in the Boston data set. The “classic” 
specification is log(MEDV) or log(CMEDV) (median house value) on a set of hedonic 
characteristics, such as CRIM (crime), ZN (large lot zoning as a proportion), INDUS 
(non-retail business acres per town), CHAS (Charles river dummy), NOX^2 (nitric 
oxides), RM^2 (average number of rooms), AGE (proportion pre 1940), log(DIS) (log of 
weighted distance to employment centers), log(RAD) (accessibility index), TAX 
(property tax rate), PTRATIO (pupil teacher ratio), B (black population) and log(LSTAT) 
(lower status population). For details, see the spdep manual and the references therein. 
Also, note that to use the powers in the regression “formula,” you must enclose them in 
an “identity” I() command, for example, as I(NOX^2). Make sure to create an lm object, 
say bo1. Compare the results for the original median value dependent variable (MEDV) 
and the “corrected” one (CMEDV). 
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Spatial Weights 
 
The Moran I test statistic for spatial autocorrelation applied to regression residuals is 
implemented by the function lm.morantest. This function operates on an lm object and 
requires that a spatial weights file be specified. The spdep package has several different 
objects to store contiguity information. It is important to know which type is appropriate 
for which function. The lm.morantest (and all other tests for spatial correlation) 
requires an listw object. This is not the same as the nb object included in the sample 
data set. The listw object also explicitly contains values for the spatial weights, whereas 
the nb object only has the identifiers for the neighbors. You need to convert a nb object to 
a listw object by means of the nb2listw function. For example: 
 
>col.listw <- nb2listw(col.gal.nb)

 
Note the difference between the two when you do a print statement. For col.gal.nb: 
 
> print(col.gal.nb)
[[1]]
[1] 2 3

[[2]]
[1] 1 3 4

…

[[49]]
[1] 44 45 48

attr(,"class")
[1] "nb"
attr(,"region.id")
[1] 1005 1001 1006 1002 1007 1008 1004 1003 1018 1010 1038 1037 1039

1040 1009
[16] 1036 1011 1042 1041 1017 1043 1019 1012 1035 1032 1020 1021 1031
1033 1034
[31] 1045 1013 1022 1044 1023 1046 1030 1024 1047 1016 1014 1049 1029
1025 1028
[46] 1048 1015 1027 1026
attr(,"gal")
[1] TRUE
attr(,"call")
[1] TRUE
attr(,"sym")
[1] TRUE

 
This is a list of vectors, with each element of the list shown in the [[ ]] notation. For 
example, the first element [[1]] contains an integer vector with elements 2 and 3, the 
identifiers for the neighbors of 1. After the list of neighbors comes information on the 
“attributes” of the object, the class (nb), labels for the neighborhoods (region.id) and 
some technical attributes used internally. In contrast the print command for a listw object, 
print(col.listw) yields: 
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$style
[1] "W"

$neighbours
[[1]]
[1] 2 3

[[2]]
[1] 1 3 4

[[3]]
[1] 1 2 4 5

…

[[49]]
[1] 44 45 48

attr(,"class")
[1] "nb"
attr(,"region.id")
[1] 1005 1001 1006 1002 1007 1008 1004 1003 1018 1010 1038 1037 1039

1040 1009
[16] 1036 1011 1042 1041 1017 1043 1019 1012 1035 1032 1020 1021 1031
1033 1034
[31] 1045 1013 1022 1044 1023 1046 1030 1024 1047 1016 1014 1049 1029
1025 1028
[46] 1048 1015 1027 1026
attr(,"gal")
[1] TRUE
attr(,"call")
[1] TRUE
attr(,"sym")
[1] TRUE

$weights
$weights[[1]]
[1] 0.5 0.5

$weights[[2]]
[1] 0.3333333 0.3333333 0.3333333

…

$weights[[49]]
[1] 0.3333333 0.3333333 0.3333333

attr(,"binary")
[1] TRUE
attr(,"W")
[1] TRUE

attr(,"class")
[1] "listw" "nb"
attr(,"region.id")
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[1] 1005 1001 1006 1002 1007 1008 1004 1003 1018 1010 1038 1037 1039
1040 1009
[16] 1036 1011 1042 1041 1017 1043 1019 1012 1035 1032 1020 1021 1031
1033 1034
[31] 1045 1013 1022 1044 1023 1046 1030 1024 1047 1016 1014 1049 1029
1025 1028
[46] 1048 1015 1027 1026
attr(,"call")
nb2listw(neighbours = col.gal.nb)

 
In addition to the neighbor list, this also includes specific values for the spatial weights 
(as well as some additional internal attributes). Similarly, the summary function is only 
defined for nb objects: 
 
> summary(col.gal.nb)
Connectivity of col.gal.nb with the following attributes:
List of 5
$ class : chr "nb"
$ region.id: num [1:49] 1005 1001 1006 1002 1007 ...
$ gal : logi TRUE
$ call : logi TRUE
$ sym : logi TRUE

NULL
Number of regions: 49
Number of nonzero links: 230
Percentage nonzero weights: 9.579342
Average number of links: 4.693878
Link number distribution:

2 3 4 5 6 7 8 9 10
7 7 13 4 9 6 1 1 1

7 least connected regions:
1005 1008 1045 1047 1049 1048 1015 with 2 links
1 most connected region:
1017 with 10 links

 
In contrast with 
 
> summary(col.listw)
Error in summary.nb(col.listw) : Not a neighbours list
In addition: Warning message:
the condition has length > 1 and only the first element will be used
in: if (class(nb) != "nb") stop("Not a neighbours list")

>  
  
Practice 
Check the contiguity information in the boston.soi file. Convert the nb object to a listw 
object. Compare print and summary for these objects. 
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Moran’s I Test for Residual Spatial Autocorrelation 
 
To carry out a Moran test on the residuals of the columbus.lm regression object, pass 
both the regression object (columbus.lm) and the listw contiguity information to the 
lm.morantest function. For example: 
 
> col.moran <- lm.morantest(columbus.lm,col.listw)
> summary(col.moran)

Length Class Mode
statistic 1 -none- numeric
p.value 1 -none- numeric
estimate 3 -none- numeric
method 1 -none- character
alternative 1 -none- character
data.name 1 -none- character
> print(col.moran)

Global Moran's I for regression residuals

data:
model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

Moran I statistic standard deviate = 2.681, p-value = 0.00367
alternative hypothesis: greater
sample estimates:
Observed Moran's I Expectation Variance

0.212374153 -0.033268284 0.008394853

 
The result, col.moran is an object of class htest, which has its specialized “print” function 
(but note how “summary” does not quite do what you might have expected). One aspect 
to note about these results is that the default significance is reported for a one-sided 
alternative (“greater”). For a two-sided alternative hypothesis, the significance would be 
twice the reported value. You can specify this with the “alternative” option, as in: 
 
> col.moran2 <-
lm.morantest(columbus.lm,col.listw,alternative="two.sided")
> print(col.moran2)

Global Moran's I for regression residuals

data:
model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

Moran I statistic standard deviate = 2.681, p-value = 0.00734
alternative hypothesis: two.sided
sample estimates:
Observed Moran's I Expectation Variance

0.212374153 -0.033268284 0.008394853

 
Check the spdep manual for details on other options that can be specified. 
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Practice 
Test for spatial residual autocorrelation in the Boston regression using boston.soi as the 
nb object.  
 
What Not To Do To Test Residual Spatial Autocorrelation 
 
It is important to realize that the Moran’s I test statistic for residual spatial autocorrelation 
takes into account the fact that the variable under consideration is a residual, computed 
from a regression. The usual Moran’s I test statistic does not. It is therefore incorrect to 
simply apply a Moran’s I test to the residuals from the regression without correcting for 
the fact that these are residuals. For example, you can extract the residuals from 
columbus.lm by means of the resid( ) function and apply the moran.test function (note 
the spelling of “randomisation”): 
 
> col.e <- resid(columbus.lm)
> col.morane <- moran.test(col.e,col.listw,
+ randomisation=FALSE,alternative="two.sided")
> print(col.morane)

Moran's I test under normality

data: col.e
weights: col.listw

Moran I statistic standard deviate = 2.4774, p-value = 0.01323
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.212374153 -0.020833333 0.008860962

 
The specific options used here are to take a normal approximation (the default is 
randomisation = TRUE, which implements a permutation test) and to specify a two 
sided alternative (default is one-sided). Compare the standardized deviate and the p-
values to those obtained with the correct test lm.morantest above. 
 
Practice 
Extract the residuals from the boston regression and compare a “naïve” Moran’s I test to 
the correct test for residual spatial autocorrelation. 
 
Lagrange Multiplier Test Statistics for Spatial Autocorrelation 
 
The Moran’s I test statistic has high power against a range of spatial alternatives. 
However, it does not provide much help in terms of which alternative model would be 
most appropriate. The Lagrange Multiplier test statistics do allow a distinction between 
spatial error models and spatial lag models. 
 
Both tests, as well as their robust forms are included in the lm.LMtests function. Again, 
a regression object and a spatial listw object must be passed as arguments. In addition, 
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the tests must be specified as a character vector (the default is only LMerror), using the 
c( ) operator (concatenate), as illustrated below. 
 
> columbus.lagrange <- lm.LMtests(columbus.lm,col.listw,
+ test=c("LMerr","RLMerr","LMlag","RLMlag","SARMA"))
> print(columbus.lagrange)

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

LMerr = 4.6111, df = 1, p-value = 0.03177

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

RLMerr = 0.0335, df = 1, p-value = 0.8547

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

LMlag = 7.8557, df = 1, p-value = 0.005066

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

RLMlag = 3.2781, df = 1, p-value = 0.07021

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

SARMA = 7.8892, df = 2, p-value = 0.01936

In a specification search, you would first assess which of the LMerr and LMlag are 
significant. In this case, both are, which necessitates the comparison of the robust forms. 
Here, this suggests the lag model as the likely alternative (p = 0.07 compared to p = 
0.85). 
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Practice 
Test for spatial autocorrelation in the boston regression and suggest the likely alternative 
model. You can experiment with different model specifications to try and eliminate 
spatial correlation by including different variables (you could try this with the Columbus 
data as well, there are in fact a few specifications where there is no remaining spatial 
residual correlation). 
 
Maximum Likelihood Estimation of the Spatial Lag Model 
 
Maximum Likelihood (ML) estimation of the spatial lag model is carried out with the 
lagsarlm( ) function. The required arguments are a regression “formula”, a data set and 
a listw spatial weights object. The default method uses Ord’s eigenvalue decomposition 
of the spatial weights matrix. There is also a sparse weights method available (but see the 
cautionary note in the spdep manual). 
 
> columbus.lag <- lagsarlm(CRIME ~ INC + HOVAL,data=columbus,
+ col.listw)

> summary(columbus.lag)

Call:
lagsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw =
col.listw)

Residuals:
Min 1Q Median 3Q Max

-37.4497093 -5.4565567 0.0016387 6.7159553 24.7107978

Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 46.851431 7.314754 6.4051 1.503e-10
INC -1.073533 0.310872 -3.4533 0.0005538
HOVAL -0.269997 0.090128 -2.9957 0.0027381

Rho: 0.40389 LR test value: 8.4179 p-value: 0.0037154
Asymptotic standard error: 0.12071 z-value: 3.3459 p-value: 0.00082027

Log likelihood: -183.1683 for lag model
ML residual variance (sigma squared): 99.164, (sigma: 9.9581)
Number of observations: 49
Number of parameters estimated: 4
AIC: 374.34, (AIC for lm: 382.75)
LM test for residual autocorrelation
test value: 0.19184 p-value: 0.66139

 
As expected, the spatial autoregressive parameter (Rho) is highly significant, as indicated 
by the p-value of 0.0008 on an asymptotic t-test (based on the asymptotic variance 
matrix). The Likelihood Ratio test (LR) on this parameter is also highly significant (p-
value 0.0037). 
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For comparison purposes, estimate this model with the inconsistent OLS estimator. First, 
you need to construct a spatially lagged dependent variable. To make the individual 
variables available as “objects” for direct manipulation (the simplest way to proceed), 
you must first “attach” the data set. Next construct a spatially lagged dependent variable 
using the lag.listw function (specify a listw spatial weights object and a variable/vector). 
Finally, include the spatial lag as an explanatory variable in the OLS regression. Note 
how the estimate and standard error of the coefficient for lagCRIME is quite different 
from the ML result. 
 
> attach(columbus)
> lagCRIME <- lag.listw(col.listw,CRIME)
> wrong.lag <- lm(CRIME ~ lagCRIME + INC + HOVAL)
> summary(wrong.lag)

Call:
lm(formula = CRIME ~ lagCRIME + INC + HOVAL)

Residuals:
Min 1Q Median 3Q Max

-38.3932 -6.5409 -0.1902 6.7995 23.4854

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.07773 9.43653 4.247 0.000107 ***
lagCRIME 0.52957 0.15612 3.392 0.001454 **
INC -0.91054 0.36314 -2.507 0.015840 *
HOVAL -0.26877 0.09312 -2.886 0.005970 **
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 10.32 on 45 degrees of freedom
Multiple R-Squared: 0.6436, Adjusted R-squared: 0.6198
F-statistic: 27.08 on 3 and 45 DF, p-value: 3.672e-10

 
After you run these analyses, don’t forget to detach(columbus) or you might run into 
memory problems. Once you detach a data set, its variables are no longer directly 
available by name, but must be specified as columns in a data frame, e.g., as 
columbus$CRIME (see the Introduction to R guide for further details). 
 
Practice 
Estimate a spatial lag model for the boston example using both OLS and ML and 
compare the results. Comment on the extent to which spatial effects have been taken care 
of. Experiment with the sparse weights approach (method= “sparse”). 
 
Maximum Likelihood Estimation of the Spatial Error Model 
 
ML estimation of the spatial error model is similar to the lag procedure and implemented 
in the errorsarlm function. Again, the formula, data set and a listw spatial weights 
object must be specified, as illustrated below. 
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> columbus.err <- errorsarlm(CRIME ~ INC + HOVAL,data=columbus,
+ col.listw)

> summary(columbus.err)

Call:
errorsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw =
col.listw)

Residuals:
Min 1Q Median 3Q Max

-34.45950 -6.21730 -0.69775 7.65256 24.23631

Type: error
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 61.053618 5.314875 11.4873 < 2.2e-16
INC -0.995473 0.337025 -2.9537 0.0031398
HOVAL -0.307979 0.092584 -3.3265 0.0008794

Lambda: 0.52089 LR test value: 6.4441 p-value: 0.011132
Asymptotic standard error: 0.14129 z-value: 3.6868 p-value: 0.00022713

Log likelihood: -184.1552 for error model
ML residual variance (sigma squared): 99.98, (sigma: 9.999)
Number of observations: 49
Number of parameters estimated: 4
AIC: 376.31, (AIC for lm: 382.75)

 
 Note how the estimate for the spatial autoregressive coefficient Lambda is significant, but 
less so than for the spatial lag model. A direct comparison between the two models can 
be based on the maximized log-likelihood (not on measures of fit such as R2). In this 
example, the log-likelihood for the error model of -184.16 is worse (less than) the one for 
the lag model of -183.17. The actual values are not that meaningful and the difference 
between the likelihoods cannot be compared more formally in a LR test because the two 
models are non-nested (that is, one cannot be obtained from the other by setting 
coefficients or functions of coefficients to zero). More specifically, one should not use 
the LR.sarlm method in spdep for such a comparison, this is only valid for nested 
hypotheses, as in the common factor hypothesis discussed next. 
 
Practice 
Estimate a spatial error model for the boston data. Compare the coefficient estimates and 
their standard errors to the OLS results and to the results for the spatial lag model. How 
does the model fit (log likelihood) compare? 
 
Spatial Durbin Model 
 
An important specification test in the spatial error model is a test on the so-called spatial 
common factor hypothesis. This exploits the property that a spatial error model can also 
be specified in spatial lag form, with the spatially lagged explanatory variables included, 
but with constraints on the parameters (the common factor constraints). The spatial lag 
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form of the error model is also referred to as the spatial Durbin specification. In spdep, 
this is implemented by specifying the “mixed” option for type in the spatial lag 
estimation (the spatially lagged explanatory variables need not be specified). For the 
Columbus example, this yields: 
 
> columbus.durbin <- lagsarlm(CRIME ~ INC+HOVAL,data=columbus,
+ col.listw,type="mixed")

> summary(columbus.durbin)

Call:
lagsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw =
col.listw, type = "mixed")

Residuals:
Min 1Q Median 3Q Max

-37.15904 -6.62594 -0.39823 6.57561 23.62757

Type: mixed
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 45.592894 13.128679 3.4728 0.0005151
INC -0.939088 0.338229 -2.7765 0.0054950
HOVAL -0.299605 0.090843 -3.2980 0.0009736
lag.INC -0.618375 0.577052 -1.0716 0.2838954
lag.HOVAL 0.266615 0.183971 1.4492 0.1472760

Rho: 0.38251 LR test value: 4.1648 p-value: 0.041272
Asymptotic standard error: 0.16237 z-value: 2.3557 p-value: 0.018488

Log likelihood: -182.0161 for mixed model
ML residual variance (sigma squared): 95.051, (sigma: 9.7494)
Number of observations: 49
Number of parameters estimated: 6
AIC: 376.03, (AIC for lm: 380.2)
LM test for residual autocorrelation
test value: 0.101 p-value: 0.75063

A test on the common factor hypothesis is a test on the constraints that each coefficient of 
a spatially lagged explanatory variable (e.g., lag.INC) equals the negative of the product 
of the spatial autoregressive coefficient (Rho) and the matching regression coefficient of 
the unlagged variable (INC). In spdep, this can be illustrated by means of the LR.sarlm 
function. This is a simple likelihood ratio test, comparing two objects for which a logLIK 
function exists. In our example, we have columbus.durbin for the “unconstrained” model 
(the model with no restrictions on the parameters) and columbus.err for the “constrained” 
model (the constraints have been enforced). The fit (log-likelihood) of the unconstrained 
model will always be greater than that of the constrained model. A likelihood ratio test is: 
 
> durbin.test1 <- LR.sarlm(columbus.durbin,columbus.err)
> print(durbin.test1)
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Likelihood ratio for spatial linear models

data:
Likelihood ratio = 4.2782, df = 1, p-value = 0.03860
sample estimates:
Log likelihood of columbus.durbin Log likelihood of columbus.err

-182.0161 -184.1552

 
This would suggest that the common factor hypothesis is rejected with a p-value of 0.038. 
However, this is incorrect since the proper number for the degrees of freedom is not 1 
(as implemented in LR.sarlm), but 2 (the number of nonlinear constraints equals the 
number of explanatory variables, excluding the constant). To get the proper p-value, you 
need to delve into some R technicalities. First, the brute force way, by typing the value 
for the LR into a pchisq function (the cumulative density function for a chi square) with 
the correct degrees of freedom: 
 
> 1 - pchisq(4.2782,2)
[1] 0.1177608

 
With the correct degrees of freedom, there is much weaker evidence to reject the null 
hypothesis. A little more elegantly, by extracting the value of the statistic from the htest 
object created by LR.sarlm 
 
> 1 - pchisq(durbin.test1[[1]][1],2)
Likelihood ratio

0.1177622

 
The slight difference between the two results is due to rounding (the second approach is 
more precise). 
 
Practice 
Check the spatial common factor hypothesis for the boston model. 
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Appendix A 
 
Answers to practice puzzles. 
 
Boston Data Set 
 
>data(boston)
>ls( )

 
gives (your results may be slightly different) 
 
> ls()
[1] "bbs" "boston.c" "boston.soi" "boston.utm"
"col.gal.nb"
[6] "columbus" "columbus.lm" "coords" "polys"

 
the data frame is boston.c, the census tract X and Y (as a matrix) are boston.utm, and 
boston.soi is a neighbor list of class nb. 
 
> summary(boston)
Error in summary(boston) : Object "boston" not found
> summary(boston.c)

TOWN TOWNNO TRACT
Cambridge : 30 Min. : 0.00 Min. : 1
Boston Savin Hill: 23 1st Qu.:26.25 1st Qu.:1303
Lynn : 22 Median :42.00 Median :3394
Boston Roxbury : 19 Mean :47.53 Mean :2700
Newton : 18 3rd Qu.:78.00 3rd Qu.:3740
Somerville : 15 Max. :91.00 Max. :5082
(Other) :379

Boston OLS Regression 
 
For example 
 
> bo1 <- lm(log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) +
+ AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
+ data=boston.c)
> summary(bo1)

Call:
lm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +

I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +
log(LSTAT), data = boston.c)

Residuals:
Min 1Q Median 3Q Max

-0.71176 -0.09169 -0.00566 0.09895 0.79780

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.558e+00 1.544e-01 29.512 < 2e-16 ***
CRIM -1.186e-02 1.245e-03 -9.532 < 2e-16 ***
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ZN 8.016e-05 5.056e-04 0.159 0.874105
INDUS 2.395e-04 2.364e-03 0.101 0.919318
CHAS1 9.140e-02 3.320e-02 2.753 0.006129 **
I(NOX^2) -6.380e-01 1.131e-01 -5.639 2.88e-08 ***
I(RM^2) 6.328e-03 1.312e-03 4.823 1.89e-06 ***
AGE 9.074e-05 5.263e-04 0.172 0.863179
log(DIS) -1.913e-01 3.339e-02 -5.727 1.78e-08 ***
log(RAD) 9.571e-02 1.913e-02 5.002 7.91e-07 ***
TAX -4.203e-04 1.227e-04 -3.426 0.000664 ***
PTRATIO -3.112e-02 5.013e-03 -6.208 1.14e-09 ***
B 3.637e-04 1.031e-04 3.527 0.000460 ***
log(LSTAT) -3.712e-01 2.501e-02 -14.841 < 2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.1825 on 492 degrees of freedom
Multiple R-Squared: 0.8059, Adjusted R-squared: 0.8008
F-statistic: 157.1 on 13 and 492 DF, p-value: < 2.2e-16

 
Boston Neighborhood Information 
 
> summary(boston.soi)
Connectivity of boston.soi with the following attributes:
List of 4
$ region.id: chr [1:506] "1" "2" "3" "4" ...
$ call : language soi.graph(tri.nb = tri2nb(boston.utm), coords =

boston.utm)
$ class : chr "nb"
$ sym : logi TRUE

NULL
Number of regions: 506
Number of nonzero links: 2152
Percentage nonzero weights: 0.8405068
Average number of links: 4.252964
Link number distribution:

1 2 3 4 5 6 7 8
10 39 93 143 143 52 22 4

10 least connected regions:
6 36 65 195 357 365 370 371 481 506 with 1 link
4 most connected regions:
176 234 326 336 with 8 links

> boston.listw <- nb2listw(boston.soi)
> summary(boston.listw)
Error in summary.nb(boston.listw) : Not a neighbours list
In addition: Warning message:
the condition has length > 1 and only the first element will be used
in: if (class(nb) != "nb") stop("Not a neighbours list")
> print(boston.listw)
$style
[1] "W"

$neighbours
[[1]]
[1] 3 30 32 35
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…

 
Boston Moran’s I for Residual Spatial Autocorrelation 
 
> boston.moran <-
lm.morantest(bo1,boston.listw,alternative="two.sided")
> print(boston.moran)

Global Moran's I for regression residuals

data:
model: lm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data = boston.c)
weights: boston.listw

Moran I statistic standard deviate = 14.5085, p-value = < 2.2e-16
alternative hypothesis: two.sided
sample estimates:
Observed Moran's I Expectation Variance

0.4364296993 -0.0168870829 0.0009762383

 
Boston Naïve Moran’s I 
 
> boston.e <- resid(bo1)
> boston.morane <- moran.test(boston.e,boston.listw,
+ randomisation=FALSE,alternative="two.sided")
> print(boston.morane)

Moran's I test under normality

data: boston.e
weights: boston.listw

Moran I statistic standard deviate = 13.7764, p-value = < 2.2e-16
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.436429699 -0.001980198 0.001012720

Boston Lagrange Multiplier Tests 

> boston.lagrange <- lm.LMtests(bo1,boston.listw,
+ test=c("LMerr","RLMerr","LMlag","RLMlag","SARMA"))
> print(boston.lagrange)

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data = boston.c)
weights: boston.listw
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LMerr = 186.5702, df = 1, p-value = < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data = boston.c)
weights: boston.listw

RLMerr = 37.606, df = 1, p-value = 8.658e-10

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data = boston.c)
weights: boston.listw

LMlag = 190.7132, df = 1, p-value = < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data = boston.c)
weights: boston.listw

RLMlag = 41.749, df = 1, p-value = 1.038e-10

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data = boston.c)
weights: boston.listw

SARMA = 228.3191, df = 2, p-value = < 2.2e-16

Boston Spatial Lag Model 
 
OLS (inconstistent!) 

> attach(boston.c)
> lagMEDV = lag.listw(boston.listw,log(MEDV))
> bo2 <- lm(log(MEDV) ~ lagMEDV + CRIM + ZN + INDUS + CHAS +
+ I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX +
+ PTRATIO + B + log(LSTAT),data=boston.c)
> summary(bo2)

Call:
lm(formula = log(MEDV) ~ lagMEDV + CRIM + ZN + INDUS + CHAS +

I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO +
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B + log(LSTAT), data = boston.c)

Residuals:
Min 1Q Median 3Q Max

-0.57709 -0.07490 -0.00451 0.07778 0.71192

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.953e+00 1.948e-01 10.029 < 2e-16 ***
lagMEDV 5.551e-01 3.232e-02 17.175 < 2e-16 ***
CRIM -6.517e-03 1.033e-03 -6.309 6.26e-10 ***
ZN 4.315e-04 4.006e-04 1.077 0.281875
INDUS 1.537e-03 1.872e-03 0.821 0.411814
CHAS1 -3.959e-03 2.685e-02 -0.147 0.882840
I(NOX^2) -2.210e-01 9.275e-02 -2.383 0.017558 *
I(RM^2) 6.829e-03 1.039e-03 6.575 1.24e-10 ***
AGE -3.026e-04 4.170e-04 -0.726 0.468429
log(DIS) -1.479e-01 2.654e-02 -5.572 4.15e-08 ***
log(RAD) 7.343e-02 1.519e-02 4.833 1.80e-06 ***
TAX -3.634e-04 9.712e-05 -3.741 0.000205 ***
PTRATIO -1.068e-02 4.141e-03 -2.580 0.010163 *
B 2.717e-04 8.176e-05 3.324 0.000955 ***
log(LSTAT) -2.098e-01 2.190e-02 -9.577 < 2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.1444 on 491 degrees of freedom
Multiple R-Squared: 0.8787, Adjusted R-squared: 0.8753
F-statistic: 254.2 on 14 and 491 DF, p-value: < 2.2e-16

ML-Lag 

> bo.lag <- lagsarlm(log(MEDV) ~ CRIM + ZN + INDUS + CHAS +
+ I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX +
+ PTRATIO + B + log(LSTAT),data=boston.c,boston.listw)

> summary(bo.lag)

Call:
lagsarlm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +
log(LSTAT), data = boston.c, listw = boston.listw)

Residuals:
Min 1Q Median 3Q Max

-0.5726328 -0.0757891 -0.0034976 0.0733915 0.7139960

Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.3233e+00 1.7959e-01 12.9368 < 2.2e-16
CRIM -7.2765e-03 9.9145e-04 -7.3393 2.147e-13
ZN 3.8160e-04 3.9680e-04 0.9617 0.3362071
INDUS 1.3529e-03 1.8533e-03 0.7300 0.4653851
CHAS1 9.5916e-03 2.6191e-02 0.3662 0.7142070
I(NOX^2) -2.8028e-01 9.0681e-02 -3.0908 0.0019960
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I(RM^2) 6.7583e-03 1.0343e-03 6.5340 6.402e-11
AGE -2.4669e-04 4.1278e-04 -0.5976 0.5500854
log(DIS) -1.5405e-01 2.6301e-02 -5.8572 4.709e-09
log(RAD) 7.6598e-02 1.5078e-02 5.0802 3.770e-07
TAX -3.7144e-04 9.6589e-05 -3.8456 0.0001202
PTRATIO -1.3589e-02 4.0900e-03 -3.3225 0.0008921
B 2.8481e-04 8.1775e-05 3.4828 0.0004962
log(LSTAT) -2.3272e-01 2.1001e-02 -11.0816 < 2.2e-16

Rho: 0.47619 LR test value: 199.22 p-value: < 2.22e-16
Asymptotic standard error: 0.030145 z-value: 15.797 p-value: < 2.22e-16

Log likelihood: 249.5643 for lag model
ML residual variance (sigma squared): 0.020466, (sigma: 0.14306)
Number of observations: 506
Number of parameters estimated: 15
AIC: -469.13, (AIC for lm: -269.91)
LM test for residual autocorrelation
test value: 11.394 p-value: 0.00073662

Boston Spatial Error Model 

> boston.err <- errorsarlm(log(MEDV) ~ CRIM + ZN + INDUS + CHAS +
+ I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX +
+ PTRATIO + B + log(LSTAT),data=boston.c,boston.listw)

> summary(boston.err)

Call:
errorsarlm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +
log(LSTAT), data = boston.c, listw = boston.listw)

Residuals:
Min 1Q Median 3Q Max

-0.6476342 -0.0676007 0.0011091 0.0776939 0.6491629

Type: error
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.85706016 0.16083868 23.9809 < 2.2e-16
CRIM -0.00545832 0.00097262 -5.6120 2.000e-08
ZN 0.00049195 0.00051835 0.9491 0.3425906
INDUS 0.00019244 0.00282240 0.0682 0.9456389
CHAS1 -0.03303429 0.02836929 -1.1644 0.2442464
I(NOX^2) -0.23369330 0.16219195 -1.4408 0.1496288
I(RM^2) 0.00800078 0.00106472 7.5145 5.707e-14
AGE -0.00090974 0.00050116 -1.8153 0.0694827
log(DIS) -0.10889419 0.04783715 -2.2764 0.0228249
log(RAD) 0.07025730 0.02108181 3.3326 0.0008604
TAX -0.00049870 0.00012072 -4.1311 3.611e-05
PTRATIO -0.01907770 0.00564160 -3.3816 0.0007206
B 0.00057442 0.00011101 5.1744 2.286e-07
log(LSTAT) -0.27212779 0.02323159 -11.7137 < 2.2e-16

Lambda: 0.70175 LR test value: 211.88 p-value: < 2.22e-16
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Asymptotic standard error: 0.032698 z-value: 21.461 p-value: < 2.22e-16

Log likelihood: 255.8946 for error model
ML residual variance (sigma squared): 0.018098, (sigma: 0.13453)
Number of observations: 506
Number of parameters estimated: 15
AIC: -481.79, (AIC for lm: -269.91)

Boston Spatial Common Factor Hypothesis 

ML estimation spatial Durbin model 

> boston.durbn <- lagsarlm( log(MEDV) ~ CRIM + ZN + INDUS + CHAS +
+ I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO +
+ B + log(LSTAT),data=boston.c,listw=boston.listw,type="mixed")

> summary(boston.durbn)

Call:
lagsarlm(formula = log(MEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +
log(LSTAT), data = boston.c, listw = boston.listw, type = "mixed")

Residuals:
Min 1Q Median 3Q Max

-0.6364278 -0.0640563 -0.0028092 0.0712728 0.6938596

Type: mixed
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.95278292 0.23318988 8.3742 < 2.2e-16
CRIM -0.00585087 0.00096535 -6.0608 1.354e-09
ZN 0.00072312 0.00053544 1.3505 0.176853
INDUS -0.00087549 0.00317281 -0.2759 0.782597
CHAS1 -0.03815722 0.02826977 -1.3498 0.177095
I(NOX^2) -0.00295140 0.19985674 -0.0148 0.988218
I(RM^2) 0.00796469 0.00105360 7.5595 4.041e-14
AGE -0.00115867 0.00050497 -2.2945 0.021760
log(DIS) -0.11456383 0.09818152 -1.1669 0.243268
log(RAD) 0.05632375 0.02330111 2.4172 0.015640
TAX -0.00049108 0.00012537 -3.9171 8.963e-05
PTRATIO -0.01323334 0.00614623 -2.1531 0.031312
B 0.00054285 0.00011446 4.7427 2.109e-06
log(LSTAT) -0.25496722 0.02334504 -10.9217 < 2.2e-16
lag.CRIM -0.00501244 0.00178601 -2.8065 0.005008
lag.ZN -0.00040563 0.00072865 -0.5567 0.577742
lag.INDUS 0.00013376 0.00398366 0.0336 0.973214
lag.CHAS1 0.12050389 0.04202611 2.8674 0.004139
lag.I(NOX^2) -0.41786543 0.22877096 -1.8266 0.067765
lag.I(RM^2) -0.00460612 0.00157869 -2.9177 0.003526
lag.AGE 0.00128725 0.00070634 1.8224 0.068390
lag.log(DIS) -0.01455930 0.10366694 -0.1404 0.888310
lag.log(RAD) 0.00421832 0.03212137 0.1313 0.895519
lag.TAX 0.00039204 0.00018447 2.1252 0.033572
lag.PTRATIO -0.00184503 0.00815813 -0.2262 0.821078
lag.B -0.00047673 0.00014613 -3.2625 0.001104
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lag.log(LSTAT) 0.11255101 0.03490285 3.2247 0.001261

Rho: 0.58793 LR test value: 171.98 p-value: < 2.22e-16
Asymptotic standard error: 0.038997 z-value: 15.076 p-value: < 2.22e-16

Log likelihood: 285.3799 for mixed model
ML residual variance (sigma squared): 0.017062, (sigma: 0.13062)
Number of observations: 506
Number of parameters estimated: 28
AIC: -514.76, (AIC for lm: -342.78)
LM test for residual autocorrelation
test value: 26.539 p-value: 2.5824e-07

Test on common factory hypothesis 

> boston.cf <- LR.sarlm(boston.durbn,boston.err)
> boston.cf

Likelihood ratio for spatial linear models

data:
Likelihood ratio = 58.9705, df = 1, p-value = 1.599e-14
sample estimates:
Log likelihood of boston.durbn Log likelihood of boston.err

285.3799 255.8946

> 1 - pchisq(boston.cf[[1]][1],11)
Likelihood ratio

1.439262e-08


