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Parameter Estimation of Models of Falling Objects 

Consider an object that due to the gravitational forces is falling in a medium, such as air. The 
object is released from a height h  at time 0t  as shown in Figure 1. The origin of the coordinate 

system that measures the position of the object is set at the released position which is assumed to 
be measured exactly.  

 

Figure 1: Falling object 

 

Accounting also for the forces applied from the air to the object, the equation of motion of the 
object is given by  

 
2

2

( )d z t
m mg R

dt
    (1) 

where ( )z t  denotes the position of the object, m  is the mass of the object, g  is the acceleration 
of gravity, R  is the air resistance. A simple and well-known model for the air resistance is 

2 ( )R mc t , where 
( )

( )
dz t

t
dt

   is the object’s velocity and c  is the air resistance coefficient 

which depends on the air friction coefficient DC , density of the air air , density of the object 

ball  and the geometric characteristics of the object. For a sphere, the air resistance coefficient 

takes the form 
3

2 4
airD

ball ball

C
c

R




 . Substituting the air resistance formula into (1), the equation of 

motion takes the form  
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2

( ) ( )d z t dz t
g c

dt dt
     

  (2) 

This is a differential equation which need to be solved with initial conditions 0 0( )z t z  and 

0 0( )t  . The values of the initial position and velocity are assumed to be both zero 

 0 0 0z    . 

The equation can be solved analytically to yield the expression for the velocity  

    0tanht gc t t 
      (3) 

and the position  

    0

1
ln coshz t gc t t

c
      (4) 

The derivation details are given in the Appendix. The prediction of the velocity and the position 
of the falling object depends on the model chosen for the air resistance coefficient and the values 
of the parameters g , c , 0t , 0z  and 0  involved in (3) and (4). Unless otherwise stated explicitly, 

the values of theinitial position and velocity are assumed to be zero.  
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We are interested in estimating the resistance coefficient c  using experimental data 

1ˆ[{ , } ]k k ND z t   of the positions ˆkz  of the object at time instances kt , 1, ,k N  , taken from 

the analysis of high-speed camera pictures. The data value at a time instance can be considered to 
be independent from the data values at other time instances. It is assumed that the model is 
perfect (no model error), the values of the rest of the variables involved in the model are known, 
and that the accuracy of the camera equipment and data processing unit for estimating 
experimentally the objects position has a measurement error which can be adequately modeled as 
zero-mean Gaussian variable with standard deviation  . It will be further assumed, for the 
purposes of this demonstration, that the level of the measurement error is known a priori which 
means that   is given. So the model parameter set ( )c   includes only a single parameter, the 
air resistance coefficient to be inferred from the data.  

Given the set of independent observations/data, we are interested in updating the uncertainty in 
the air resistance coefficient c  of the model. To infer the value of the single parameter (air 
friction coefficient) given the data, one needs to set up a model for the prediction error, select the 
prior, build the expression of the likelihood and use the asymptotic analysis to approximate the 
posterior by a Gaussian.  

Prediction Error Model: Based on the theory, the prediction error equation is  

 ˆ ( ; )k k kz z t c e    (5) 

where ke  is the prediction error assumed to be a zero-mean Gaussian variable with known 

variance 2 , i.e. 2(0, )ke N � .  

Prior: For simplicity it is assumed that the prior distribution for the air friction coefficient is 
uniform, that is,  

 max min min max1/ ( ),       c [ , ]
( | )

0                 otherwise

c c c c
p c I

 
 


  (6) 

where the bounds minc  and maxc  are wide so that the parameter inference and uncertainty is not 

influenced by such choices.  

Likelihood: To evaluate the likelihood 1ˆ( | , ) ({ } | , )k Np D I p z c I  , one uses the prediction error 

equation, the fact that the measured data at different time instances are independent, and applies 
successively the product rule of the axiom of probability to finally derive that  

 

 

1
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2

2
1

ˆ ˆ( | , ) ({ } | , ) ( | , )

1 1
ˆ                exp ( ; )
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






 

     




  (7)

Posterior PDF: Substituting in the Bayes formula the expression for the likelihood given in (7) 
and the uniform prior PDF given in (6), the posterior PDF of the uncertain parameter c  takes the 
form 

 
2

1 1
( | , ) exp ( )

2N
p c D I J c

 
    

  (8) 
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where the misfit function (or measure of fit function) ( )J c is given by  

  2

1

ˆ( ) ( , )
N

k k
k

J c z z t c


    (9) 

It can be seen that ( )J c  is a highly nonlinear function of the model parameter c  to be inferred in 
this exercise.  

Most Probable Value or Best Estimate: The function ( )L c , defined in theory as the minus the 
logarithm of the posterior PDF, is given by  

 2
2

1
( ) log ( | , ) ( ) log constant

2 2

N
L c p c D I J c 


       (10) 

For constant variance 2 , the most probable value ĉ  of c , also known as Maximum-A-
Posteriory (MAP) estimate, maximizes the posterior PDF or, equivalently, minimizes ( )L c  or the 
misfit function ( )J c . In contrast to the previous example, the optimization cannot be performed 

analytically (using 
 

0
L c

c





 ). Any gradient-based optimization algorithm can be used to find 

the optimum. These algorithms require that the gradient of the objective function with respect to 
the parameters is provided. The analytic expression for the gradient of the objective with respect 
to the air friction coefficient is  

 
  2

2 2
1 1

1 1
ˆ ˆ[z ( , )] ( ( , ) z )

2 k k

L c z
z t c z t c

c c c 
  

 

 

          
   

where  

 
      00 0

2

ln coshtanh

2

gC t tt t g gC t tz

C CC gC

 
        


 

Derivation details are given in the Appendix. All results of the optimization in this example are 
carried out in Matlab using the fminunc m-file.  

Uncertainty in Model Parameter: The uncertainty in the value of the model parameter c  is 
characterized by the second derivative of the function ( )L   which is given by (for derivation see 
Appendix) 
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1
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d L z z
z t

dc c c



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where  
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  0tanhT gC t t
     

and 

   2
01

2

T g
T t t

C gC



  


 

The measure of the uncertainty, provided by the square root of the inverse of the second 
derivative of ( )L c  evaluated at the most probable value, is given by   

 

1/2
2

| 2
ˆ

c D

c c

d L

dc






 
   
 

  (11) 

which is obtained in closed form for this example, provided that the MAP value has been 
estimated numerically.  

Given the MAP ĉ  and the uncertainty index |c D  we can write a measure of the uncertainty 

interval of c  in the form  

 |ˆ c Dc    (12) 

Asymptotic Posterior PDF: Following the theoretical result and using the MAP ĉ  and the 
uncertainty index |c D , the posterior PDF is approximated by the Gaussian distribution  

 2
2
||

1 1
ˆ( | , ) exp ( )

22 c Dc D

p c D I c c


 
   

  
  (13) 

Simulated Experimental Data: In absence of experimental we generate simulated data using the 
prediction error equation for a nominal value nom  of the model parameter set   and a nominal 

value nom  of the prediction error parameter  . The selected time instances can be viewed on 

figure 2, along with the velocity diagram (  v t ) which we obtain from the model. Experimental 

values are tabulated in Table 1 for 20N   experimental data points and for the following values 
of the model parameters: 9.81nomg  , 0.106nomc  , 0, 1nomt  sec. The time instances are shown in 

the first column,  while the results in the second third and fourth column are based on nominal 
values of measurement error given by nom  0.001, 0.10 , 0.30, respectively. This allows us to 

study the effect of measurement error on the parameter inference. 
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Figure 2: Comparison of the selected time instances with the velocity plot.  

 

Table 1: Experimental data for different nominal values of nom  

tκ  σ = 0.001  σ = 0.1  σ = 0.3 

1,05  0,010974  0,102239  ‐0,111934 

1,10  0,046636  0,018954  ‐0,082516 

1,15  0,110837  0,212871  0,710952 

1,20  0,193019  0,160348  0,480153 

1,25  0,303365  0,404578  0,173697 

1,30  0,434767  0,497665  0,629414 

1,35  0,590750  0,567222  0,480500 

1,40  0,763888  0,677387  0,975723 

1,45  0,959737  0,855933  1,384999 

1,50  1,176771  1,149528  0,695180 

1,60  1,665758  1,621698  1,974168 

1,80  2,842586  2,801649  3,279906 

2,00  4,234222  4,333185  4,249072 

2,20  5,786667  5,758120  6,311766 

2,40  7,457189  7,571241  7,503489 

2,60  9,206042  9,154222  8,836249 

2,80  11,013191 11,111480 10,356175

3,00  12,860832 12,807276 12,759479

4,00  22,341639 22,359716 22,556121

5,00  31,944013 32,041227 32,039376
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Figure 3 shows the prediction of the position ( ; )nomz t   obtained from the model given the 

nominal values of the model parameters, along with the generated “experimental” data, for 
various levels of model error.  It can be seen that the smaller the σ value, the smaller the error, 
thus the experimental data fit the model predicted z better. 
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(a) nom  0.001     (b) nom  0.1 
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     (c) nom  0.3 

 

 

Figure 3: Comparison of nominal model prediction of position and the experimental 
measurements for different values of the prediction error (a) nom  0.001, (b) nom  0.1, (c) 

nom  0.3.  
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Numerical Results: We will be examining the following experimental cases. 

A. Changing the number of data points (N) 

 Case 1:  N=1 

 Case 2:  N=2 

 Case 3:  N=5 

 Case 4:  N=20 

B. Changing the time instances chosen (always for N=2) 

We define 3 phases of the drop.  Phase 1: the velocity is changing very quickly. 

     Phase 2: the velocity is changing at a slower pace. 

     Phase 3: the velocity approximately remains the same. 

So we  also have 

 Case 5:  Data taken during phase 2 

 Case 6:  Data taken during phase 3 

Note that case 2 is also for N=2 with data taken during phase 1. 

We the experimental data is taken from table 1 and is always the same from table 1. For more 
visible results we examine the case of nom  0.3. 

The time instances for the different experimental cases (different N  values) are reported in 
Figure 5.    
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Figure 4: The time instances for the different experimental cases and N  values. 
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Note that data affects the values of ĉ  and |c D . Figures 5 and 6 compares the curve (  z t ) 

created using the nominal c  0.106nomc   with the one created using the optimal c (most 

probable value, ĉ ) found using the fminunc m-file, for the different experimental cases. 

Having in mind that the nominal values were the ones used for generating the “experimental” 
data of table 1, we can say that the more close the optimal curve is to the nominal one the better it 
predicts the object’s behavior at non measured points. 

It can be seen that optimal curve is near the nominal one near given data points. If the given data 
points are early in motion the optimal curve fails to properly predict the behavior at later times of 
the motion and diverges from the nominal one.  
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(a) Case 1        (b) Case 2 

1 2 3 4 5 6 7
-10

0

10

20

30

40

50

60

Time (s)

D
is

ta
nc

e
 (

m
)

 

 
Nominal
Optimal
DataPoint

1 2 3 4 5 6 7
-10

0

10

20

30

40

50

60

Time (s)

D
is

ta
nc

e
 (

m
)

 

 
Nominal
Optimal
DataPoint

 
(c) Case 3       (d) Case 4 

 

Figure 5: Comparison of the curve (  z t ) created using the nomc  with the one created using the 

ĉ  for (a) Case 1: N  1, (b) Case 2: N  2, (c) Case 3: N  5 and (d) Case 4: N  20.  
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B. Changing the time instances chosen (always for N=2) 

 

1 2 3 4 5 6 7
0

10

20

30

40

50

60

Time (s)

D
is

ta
nc

e
 (

m
)

 

 
Nominal
Optimal
DataPoint

1 2 3 4 5 6 7
0

10

20

30

40

50

60

Time (s)

D
is

ta
nc

e
 (

m
)

 

 
Nominal
Optimal
DataPoint

 
(a) Case 5        (b) Case 6 

 

Figure 6: Comparison of the curve (  z t ) created using the nomc  with the one created using the 

ĉ  for 2N   and experimental cases (a) Case 5 and (b) Case 6. The time instances for the 
different experimental cases are reported in Figure 4.    

 

 

Figure’s 7 and 8 show the evolution of the posterior PDF ( | , )p c D I  (the posterior uncertainty in 
c ) . The asymptotic results for the posterior PDF are compared also with the exact results using 
the posterior PDF in (3). 

It can be seen that as the number of data increases the Gaussian posterior PDF converges to the 
exact posterior PDF. Also, as the number of data increases the uncertainty in the parameter c  
decreases.  

Comparing the cases with N=2 (that is Case 1, Case 2 and Case 3) why see that the later the 
measurements the more close is the exact posterior PDF to it’s Gaussian approximation. Also, as 
the time of data collection increases the uncertainty in the parameter c  decreases.  
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Figure 7: Comparison of approximate Gaussian posterior PDF with exact posterior PDF for (a) 
Case 1: N  1, (b) Case 2: N  2, (c) Case 3: N  5 and (d) Case 4: N  20.  
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Figure 8: Comparison of approximate Gaussian posterior PDF with exact posterior PDF for 
2N   and experimental cases (a) Case 5 and (b) Case 6. The time instances for the different 

experimental cases are reported in Figure 4.    
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Example 2: Parameter Estimation of Models of Falling Objects 

 

Consider the falling object problem introduced in Example 1. The interest in this case lies in 
estimating two models parameters: the air resistance coefficient c , and the initial time 0t  that the 

object was released, given the set of independent observations/data (see Table 1). The other 
model parameters are considered known and the size of the error is due to measurement only and 
thus it can be considered to be known as well. The analysis is based on the same data and 
assumption introduced in Example 1. The prediction error equation is given by (5). The prior for 
both parameters is assumed uniform, given by (6) for the parameter c  and by a similar expression 
for the parameter 0t  involving wide enough bounds 0,mint  and 0,maxt  so that the inference is not 

affected by such bounds. The likelihood function, the posterior PDF and the function ( )L   
remain the same as the ones given in (7), (8) and (10), respectively, with the parameter set 

0( , )c t   involving two parameters instead of one.   

Most Probable Value: For constant variance 2 , the most probable value or the MAP value 

0
ˆ ˆˆ( , )c t   is obtained by minimizing ( )L   or the misfit function ( )J  . Similar to the one 

parameter case, the optimization can not be performed analytically. A gradient-based 
optimization algorithm is used to find the optimum. The analytic expressions for the gradient of 
the objective function, required in gradient-based optimization algorithms, with respect to the air 
resistance coefficient and the initial time are given by  

 
2

1

( ) 1
ˆ( ( , ) z )k

dL z
z t

dc c


 






    
  

 
2

10 0

( ) 1
ˆ( ( , ) z )k

dL z
z t

dt t


 






 
   

  

Derivation details can be found in the Appendix. All results of the optimization in this example 
are carried out in Matlab using the fminunc m-file.  

Uncertainty in Model Parameter: The uncertainty in the value of the model parameters is 
characterized by the Hessian of the function ( )L  . The components of this Hessian are given by 
(for derivation see Appendix) 
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Where 
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Following the theoretical development, the uncertainty in the two-dimensional parameter space is 
completely characterized in the neighborhood of the MAP value by the eigenvalues and the 
eigenvectors of the Hessian matrix.  

Asymptotic Posterior PDF: Following the theoretical result and using the MAP estimate ̂  and 

the Hessian matrix ˆ( )H  , the posterior PDF is approximated by the two-variable Gaussian 
distribution  

 
 

ˆdet[ ( )] 1 ˆ ˆ ˆ( | , ) exp ( ) ( )( )
22

T
n

H
p D I H


     



      
  (14) 

where 2n   in this case. Note that the covariance matrix 1
|

ˆ( )DC H   of the Gaussian 

distribution can also be written in the form  
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 0 0 0 0

0 0 0 0 0 0 0 0

2 2
| | | | | |

| 2 2
| | | | | |

cc D ct D cc D ct D cc D t t D

D

ct D t t D ct D cc D t t D t t D

C
C

C


    

    

   
    
      

  (15) 

where 
0 0 0 0| | | |/ ( )ct D ct D cc D t t DC    is the correlation coefficient between the two uncertain 

parameters c  and 0t  given the data. Note that 
0 |ct D  is bound by  

0 |1 1ct D   , with values close 

to zero implying uncorrelated parameters, while values close to one implying fully correlated 
parameters.  

The posterior marginal distribution ( | , )p c D I  of the parameter c  is Gaussian with mean ĉ  and 

variance 2
|cc D , while the marginal distribution 0( | , )p t D I  of the parameter 0t  is Gaussian with 

mean 0̂t  and variance 
0 0

2
|t t D . In particular, the marginal distribution of c  is Gaussian, i.e. 

2
|ˆ( , )cc Dc N c � , with both ĉ  and 2

|cc D  obtained from the two-parameter inference problem and 

should be different from the corresponding values obtained from the single-parameter inference 
problem in Example 1. 

 

 

Numerical Results: Parameter inference results are obtained using the simulated experimental 
data in Table 1. We will be using the same experimental cases, with the exception of Case 1. We 
do not examine the case of N  1 because it’s impossible to evaluate two parameters with only 

one data point. The Matlab code itself gives an error that the ˆ( )H   is not a positive definite 
matrix. 

 

A. Changing the number of data points (N) 

Figure 6 shows the contour plots of the posterior PDF 0( , | , )p c t D I  (the posterior uncertainty in 

c  and 0t ) as a function of the number of data N  for N   2, 5, 20 (experimental cases 2, 3 and 

4). Note that data affects the MAP values ĉ  and 0̂t  as well as the uncertainty in these values. The 

asymptotic results for the posterior PDF are compared also with the exact results using the 
posterior PDF in (8).Comparing cases 2, 3 and 4, it can be seen that as the number of data 
increases the Gaussian posterior PDF converges to the exact posterior PDF. Also, as the number 
of data increases the uncertainty in the parameters c  and 0t  decreases.  
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(c) N  20 

 

Figure 9: Comparison of contour plots of approximate Gaussian posterior PDF with exact 
posterior PDF for (a) Case 2: N  2, (b) Case 3: N  5 and (c) Case 4: N  20. The time 
instances for the different experimental cases are reported in Figure 4.    

 

B. Changing the time instances chosen (always for N=2) 

The effect of the time instances on the parameter inference is investigated. Results for the contour 
plots of the Gaussian posterior PDF of the model parameter are shown in Figure 8 for the 
experimental cases 5 and 6. The contours of the Gaussian posterior PDF is compared with the 
contours of the exact posterior PDF. The values of the correlation coefficients for each 
experimental case are given in Table 2. Comparing the cases for N=2 (these are cases 2,5 and 6) 
It can be seen that as we take data in later moments of the motion the Gaussian posterior PDF 
converges more to the exact posterior PDF. Also, as the number of data is taken in the later 
phases of the motion the uncertainty in the parameters c  and 0t  decreases. 
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Figure 10: Comparison of approximate Gaussian posterior PDF with exact posterior PDF for 
2N   and experimental cases (a) Case 5 and (b) Case 6. The time instances for the different 

experimental cases are reported in Figure 4.    

 

 

The optimal values (Maximum-A-Posteriory (MAP)) and the values of the correlation 
coefficients 

0|ct D  for each experimental case are given in Table 2. It can be seen (by observing 

cases 2,3 and 4) that the correlation coefficient decreases when the number of experimental data 
(N) increases. And by observing cases 2, 5 and 6 it can be seen the drop phase during which the 
data taken does not affect the correlation coefficient. 

 

Table 2: MAP values and Correlation coefficient 
0|ct D  for each experimental case 

Case2  optc   0optt   Corr. Coef. 

2  ‐0.0471  1.1000  0.9961 

3  0.1054  1.0004  0.7673 

4  0.1065  0.9936  0.6886 

5  0.2393  0.7699  0.9742 

6  0.1087  0.9559  0.9763 

 

 

Using the posterior approximation as a Gaussian distribution we can find the marginal 
distributions for the parameters c  and 0t . That is shown in Figures 7 (left) and 7 (right), 

respectively, for N=5 and N=20. In Figure 7 (left) the uncertainty in c  obtained from the one-
parameter inference problem in Example 1 is also shown.  We use N=5 and N=20 (experimental 
cases 3 and 4) because that is the case in which the Gaussian posterior PDF converges to the 
exact posterior PDF the most. 

It can be seen that the larger the amount of experimental data (N), the smaller the covariance. 
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Also from the figures on the left we can see that the optimal values of c (MAP values ĉ  or optc ) 

are not the same for the 1-parameter problem and the 2-parameter problem neither are the 
covariances. 
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Figure 7: Posterior marginal distributions Posterior for the parameters c  (left) and 0t  (right) for 

(a) Case 3 (N=5) and (b) Case 4 (N=20). 
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Example 3: Parameter Estimation of Models of Falling Objects 

Return to the falling object problem introduced in Example 1. We are interested in estimating all 
three model parameters (acceleration of gravity g , air resistance coefficient c , initial time 0t ) 

and the prediction error parameter  . The analysis is based on the same data and assumption 
introduced in Example 1. The prediction error equation, the likelihood function, the posterior 
PDF and the function ( )L   remain the same as in example 1, with the parameter set 

0( , , , )g c t   involving four parameters instead of one. The prior for all four parameters is 

assumed uniform, given by (6) for the parameter c  and by similar expressions for the other three 
parameters, using wide enough bounds so that the inference is not affected by such bounds.   

 

Most Probable Value: The most probable value or the MAP value 0
ˆ ˆˆ ˆ ˆ( , , , )g c t   is obtained by 

minimizing ( )L  . The optimization is performed numerically using a gradient-based 
optimization algorithm. The analytic expressions for the gradient of the objective function, 
required in gradient-based optimization algorithms, with respect to all four parameters are given 
in the Appendix. All results of the optimization in this example are carried out in Matlab using 
the fminunc m-file.  

 

Uncertainty in Model Parameter: The uncertainty in the value of the model parameters is 
characterized by the 4x4 Hessian matrix of the function ( )L  . The components of this Hessian 
are also given in the Appendix. Following the theoretical development, the uncertainty in the 
four-dimensional parameter space is completely characterized in the neighborhood of the MAP 
value by the eigenvalues and the eigenvectors of the Hessian matrix.  

 

Asymptotic Posterior PDF: Following the theoretical result and using the MAP estimate ̂  and 

the Hessian matrix ˆ( )H  , the posterior PDF is approximated by the multi-variable Gaussian 

distribution (14). Note that the covariance matrix 1
|

ˆ( )DC H   of the Gaussian distribution can 

also be written in a 4x4 matrix similar to the 2x2 matrix in (15) with the correlation coefficients 

| | | |/ ( )gc D gc D gg D cc DC   , 
0 |gt D , |g D , 

0 |ct D , |c D  and 
0 |t D  quantifying the relative 

correlation between the parameter pair involved in the subscripts.   

From this multi-variable Gaussian distribution, the marginal distribution of one or two or three 

parameters are Gaussian and can easily be recovered from the elements of the mean vector ̂  and 

the covariance matrix |DC . For example, the joint marginal distribution of the parameter set 

0( , )c t  is Gaussian with mean 0̂ˆ( , )c t  and covariance matrix 0

0

0 0 0

2
| |

( , )| 2
| |

cc D ct D

c t D

ct D t t D

c
C

c





 
  
  

, both 

obtained from the four-parameter inference problem and should be different from the 
corresponding values obtained from the two-parameter inference problem in Example 2. The 
marginal distribution of c  is also Gaussian, i.e. 2

|ˆ( , )cc Dc N c � , with both ĉ  and 2
|cc D  obtained 

from the four-parameter inference problem and should be different from the corresponding values 
obtained from the single-parameter inference problem in Example 1 or the parameter inference 
problem in Example 2. 

 



Example: Falling Object 
 

 19

Numerical Results: Parameter inference results for the four-parameter case are obtained using the 
simulated data in Table 1. Figures 12 shows contour plots of the marginal distributions of a pair 
of parameters in two-dimensional parameter spaces for number of data  N  5.  

g

c

7.5 8 8.5 9 9.5 10

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

g
t 0

7.5 8 8.5 9 9.5 10
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

 

(a) ( , | , )p g c D I      (b) 0( , | , )p g t D I  

g

σ

7.5 8 8.5 9 9.5 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

c

t 0

0.07 0.08 0.09 0.1 0.11
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

 

 (c) ( , | , )p g D I     (d) 0( , | , )p c t D I  

c

σ

0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t
0

σ

0.85 0.9 0.95 1 1.05

0

0.05

0.1

0.15

0.2

 

(e) ( , | , )p c D I       (f) 0( , | , )p t D I  

Figure 12: Marginal posterior uncertainty for N=5 and for parameter pairs: (a) ( , | , )p g c D I , (b) 

0( , | , )p g t D I , (c) ( , | , )p g D I ,(d) 0( , | , )p c t D I , (e) ( , | , )p c D I  and (f) 0( , | , )p t D I  
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Table 3: Optimal values found ( 0̂ˆ ˆ ˆ, , ,g c t  ) for N=5 

N  gopt  copt  t0opt  σopt 

5  8.7529  0.0917  0.9475  0.0946 
         

 

 

In figure 13 the asymptotic results for the marginal posterior PDF of parameters c and t0 (figure 
12(d)) are compared with the approximate and exact results of the posterior PDF obtained using 
the two-parameter inference case in Example 2. 
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Figure 13: Comparison between the asymptotic results for the marginal posterior PDF of 
parameters c and t0 (figure 13(d)) and the approximate and exact results of the posterior PDF 
obtained using the two-parameter inference case in Example 2, for N=5. 

 

 

The values of the correlation coefficients |i j D   are given in Table 5. It can be seen that the two. 

 

Table 5: Correlation coefficient 
0|ct D  for the experimental case 3 (N=5) 

 |gc D   
0 |gt D   |g D   

0 |ct D   |c D   
0 |t D  

0.9876  0.9497  0.0206  0.9004  0.0203  0.0197 
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The marginal distributions for the parameters c  and 0t  are shown in Figures 14 (left) and 14 

(right), respectively. In Figure 14 (left) the uncertainty in c , ( | , )p c D I , obtained from the one-
parameter inference problem in Example 1, and the marginal posterior PDF ( | , )p c D I  derived 
from the two-parameter inference problem in Example 2 are also shown. In Figure 11 (right) the 
uncertainty in 0t  obtained from the marginal posterior PDF 0( | , )p t D I  derived from the two-

parameter inference problem in Example 2 is also shown. 
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Figure 14: Comparison of the posterior marginal distributions for the parameters c  (left) and 0t  

(right) for the experimental case 3. The time instances for the experimental case 3 are reported in 
Figure 4.    

 

 

Table 6 summarizes the results of the MAP values ĉ  of c  computed for N  5 based on the 
marginal distribution for the parameter obtained for the following inference cases (IF): IF1 
involving a single parameter (see Example 1), IF2 involving two parameters (see Example 2), IF3 
involving four parameters (see Example 3). It can be clearly seen that the MAP values are 
affected by the parameter inference case considered. It should also be noted that the MAP values 
ĉ  of c  corresponding to the four-dimensional exact posterior PDF 0( , , , | , )p g c t D I , two-

dimensional exact marginal posterior PDF 0( , | , )p c t D I , and the one-dimensional exact marginal 

posterior PDF ( | , )p c D I  are expected to be different. Estimation of this is quite challenging 
since the due to the challenge in estimating the marginal posterior PDFs from the exact four-
dimensional posterior PDF. Approximating the exact posterior PDF by a Gaussian posterior PDF 
has an effect of estimating the same MAP value ĉ  independently of the used posterior PDFs or 
marginal posterior PDFs.   

 

Table 6 : MAP values ĉ  of c  computed for N  5 and for the inference cases IF1 (one parameter 
- Example 2), IF2 (two parameters - Example 2), and IF3 (four parameters - Example 3).  

  

IF   IF1   IF2   IF3 

MAP ĉ   0.1054   0.1054   0.0917  



Example: Falling Object 
 

 22

Example 5: Optimal Experimental Design (OED) for Falling Objects 

Considering the falling object problem, the objective of the optimal experimental design is to 
estimate the optimal time instances to measure the position of the object so that the information 
that the corresponding data contain for estimating the values of the model parameters is 
maximized. This is achieved by minimizing the information entropy associated with the posterior 
distribution of the model parameters. The design variables in the minimization problem are the 
time instances.  

The asymptotic approximation of the information entropy, valid for large number of data 
( N  ), is used for optimal experimental design. This asymptotic estimate of the information 
entropy  is given for this particular problem in the form  

   0 0

1 1
; ( ; , ) ln(2 ) ln[det ( ; , )]

2 2
I D I N Q        �   (16) 

Change the symbol Q to H 

where 1( , , )Nt t    contains the design variables, 0
ˆ( , , )D     is the optimal value of the 

parameter set   that minimizes the measure of fit ( ; , )J D   given in ??, and ( ; , )Q     is an 
N N   semi-positive definite matrix defined as ( ; , )T J D      and asymptotically 
approximated by 

 1

1

( ; , ) [ ( ; )] [ ( ; )]
N

T
k k

k

Q z t z t    



       (17) 

in which 1[ / , , / ]T
N
         is the usual gradient vector with respect to the parameter set 

 . The matrix ( , , )Q L    is a semi-positive definite matrix, known as the Fisher information 
matrix (FIM), containing the information about the uncertainty in the values of the parameters   
based on the data from all measured positions specified in  .  

In the initial stage of designing the experiment, the data and consequently the values of the 

optimal model parameters ̂  and the form of the prediction error covariance matrix S  are not 

available. In practice, useful designs can be obtained by taking the optimal model parameters ̂  

and prediction error covariance S  to have some nominal values 0  and S  to arise from a 

correlation function such as (20), chosen by the designer to be representative of the system and 
the expected model and measurement errors.  

Prediction Error Model: An analysis of the prediction error correlation models is crucial and is 
presented next. The prediction error , ,modk k meas ke e e   in ?? is due to a term, ,k mease , accounting 

for the measurement error and a term, ,modk ele , accounting for the model error. Assuming 

independence between the measurement error and model error, the covariance tS  of the total 

prediction error is given in the form  

 modmeas el      (18) 

where meas  and model  are the covariance matrices of the measurement and model errors, 
respectively.  

The designer has to assume values for the individual covariance matrices in (18). Such 
assumptions may depend on the nature of the problem analyzed. One reasonable choice is to 
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assume that the measurement error is independent of the location of sensors so that the 
covariance meas  takes the diagonal form 2

1
meas I  , where I  is the identity matrix.  

For the model errors, a certain degree of correlation should be expected for the model errors 
between two neighborhood locations arising from the underlining model dynamics. This 
correlation can be taken into account by selecting a non-diagonal covariance matrix model . 
Specifically, the correlation model

ijS  between the predictions errors ,modie  and ,modje  at DOFs i  and 

j , respectively, is selected in this work to be  

 mod mod mod
,mod ,mod[ ] ( )el el el

ij i j ii jj ijE Re e dS = = S S   (19) 

that accounts for the time distance | |ij i jt td = -  between the time instances it  and jt , where 

( )ijR d  is a correlation function satisfying (0) 1R = . In general, the covariance matrix should be 

consistent with the actual errors and correlations as observed from measurements. However, in an 
experimental design stage such measurements are not available to guide the selection of the 
correlation between prediction errors. Instead a correlation function should be postulated to 
proceed with the design of the optimal sensor locations. Several correlation functions can be 
explored. For demonstration purposes, the following exponential correlation function is assumed:  

 ( ) exp[ / ]R d d l= -   (20) 

where l  is a measure of the temporal correlation length. However, the formulation presented is 
general and does not depend on the choice of the correlation model.  

Assuming the following model for the variance mod 2 2
2 ˆel

kk kzsS =  of the prediction error at a time 

instant kt , where 2
2s  is independent of the time instant, the covariance matrix of the prediction 

error in (19) takes the form  

 mod 2
,mod ,mod 2 ˆ ˆ[ ] ( )el

ij i j i j ijE z z Re e s dS = =  

Substituting in (18), the ( , )i j  element ijS  of the covariance matrix S  is given by  

 2 2 2 2
1 2 1ˆ ˆ ˆ ˆ( ) (1 ( ))ij i j ij i j ijz z R z z Rs s d s h dS = + = +   (21) 

where 2 1/    is a measure of the size of the model error in relation to the measurement error. 

Values of 0   imply that the measurement error dominates the modeling error in the prediction 
error equation, while values of 1   imply that the measurement error is negligible compared to 
the model error. Substituting (21) into (17) and then (16), the optimal design based on the 
information entropy depends only on the ratio 2 1/    and is independent of the value of 1 . 

To perform the optimal design one has to replace the measured values in (21) by the nominal 
model predicted values, i.e. 0ˆ ( ; )k kz z t q» .  

Numerical Results:  

OED Case ( )c  , N  1: Consider the problem of a single parameter g , c  or 0t . The 

information entropy as a function of the time we take the measurement for a single time instant is 
given in Figure 15 for different values of c. The selection of the   value makes no difference on 
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the results when N=1. It can be seen that the later the measurement the lower the information 
entropy and thus the uncertainty for the parameter c.  
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Figure 15: Information entropy as a function of time instance that a measurement is taken. We 
selected 6   values:   0.001, 0.1, 1, 10, 100, 1000. (a) g is the only parameter, (b) c is the only 
parameter, (c) t0 is the only parameter. 

 

OED Case ( )c  , N  2: Consider the problem of a single parameter that is g , c  or 0t . The 

optimal time instances for two measurements t1,t2 (t1,t2 [1,20] ) as a function of   is given in 
Figure 16 for correlation time  2 sec. It can be seen that for very small values of h the two 
time instances approach each other, but for bigger h values they have a almost constant difference 
of   8.5 sec. For small values of h ( 0h   ) we can say that there is no model error, in that case 
it is wrong to assume asymptotic approximation and the CMA gives as the best solution one that 
has N times the same time instance. 
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(c) t0 is the only parameter 

 

 

Figure 16: Optimal time instances t1,t2 (for t1,t2 [1,20] )  that measurements are taken as a 
function of the ratio of model to measurement errors  . The correlation time is set to  2 sec.  

We chose  0.001,  0.002,  0.005,  0.01,  0.1,  1,  10,  100,  1000 . The graphs are in semi-

logarithmic scale 
 

 

 

OED Case ( )c  , N  1:10: Consider the problem of a single parameter g , c  or 0t . The 

optimal time instances for 1 to N  measurements is given in Figure 17 (left) for fixed ratio of 
model to measurement errors 1   and for correlation time  2 sec. The minimum information 
entropy computed at the optimal time instances as a function of the number of measurements is 
given in Figure 17 (right). 
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(a) g is the only parameter 
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(b) c is the only parameter 
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(c) t0 is the only parameter 

 

Figure 17: (Left) optimal time instances for 1 to N  measurements. (Right) Minimum 
information entropy as a function of the number of measurements. 1   and  2 sec.  
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Exercise: Inference of Resistance Coefficients for Falling Object on Liquids  

Consider a sphere of diameter sd  and density s  that due to the gravitational forces is falling in a 

fluid with density   and dynamic viscosity   (note that the kinematic viscosity is /   ). 

The terminal velocity ( 0U ) is acquired when the force of buoyancy together with the fluid’s 

resistance to the movement, become equal with the weight of the sphere. We can approximate the 
fluid’s resistance from Stokes law, and for Reynold number 0Re / v 0.12U d   we get that  

 
 2

0 18

d g
U   




   

We are interested in estimating the dynamic viscosity   of the fluid, using experimental data 

0 1[{U , } ]
k ks ND    of the terminal velocities 0k

U  of the object with density 
ks , 1, ,k N  , 

taken from measuring the travelling time of the sphere for certain fall length, during which the 
sphere has it’s terminal velocity. The data value at a certain density 

ks can be considered to be 

independent from the data values at densities. It is assumed that the models used are perfect (no 
model error), the values of the rest of the variables involved in the model are known, and that the 
accuracy of the time measurements has a measurement error which can be adequately modeled as 
zero-mean Gaussian variable with standard deviation  . It will be further assumed, for the 
purposes of this demonstration, that the level of the measurement error is known a priori which 
means that   is given. So the model parameter set ( )   includes only a single parameter, the 
dynamic viscosity of the fluid to be inferred from the data.  

Given the set of independent observations/data, we are interested in updating the uncertainty in 
the dynamic viscosity   of the model. To infer the value of the single parameter (dynamic 

viscosity) given the data, one needs to set up a model for the prediction error, select the prior, 
build the expression of the likelihood and use the asymptotic analysis to approximate the 
posterior by a Gaussian.  

Prediction Error Model: Based on the theory, the prediction error equation is  

 0 0( , )
k k kU U e     where 

ke  is the prediction error assumed to be a zero-mean Gaussian variable with known variance 2 , 

i.e. 2(0, )ke N � .  

Prior: For simplicity it is assumed that the prior distribution for the air friction coefficient is 
uniform, that is,  

 max min min max1 / ( ),       μ [ , ]
( | )

0                 otherwise
p I

   


 
 


 

where the bounds min  and max  are wide so that the parameter inference and uncertainty is not 

influenced by such choices.  

Likelihood: To evaluate the likelihood 0 1( | ) ({U } | )
k Np D p  , one uses the prediction error 

equation, the fact that the measured data at different time instances are independent, and applies 
successively the product rule of the axiom of probability to finally derive that  
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0 1 0

1

2

0 02
1

( | ) ({U } | ) (U | )

1 1
                exp ( , )

22

k k

k k

N

N
k

N

s
k

p D p p

U U

  

 







 

       




  (22)

Posterior PDF: Substituting in the Bayes formula the expression for the likelihood and the 
uniform prior PDF, the posterior PDF of the uncertain parameter c  takes the form 

 
2

1 1
( | ) exp ( )

2N
p D J 

 
    

  

where the misfit function (or measure of fit function) ( )J  is given by  

 
2

0 0
1

( ) ( , )
k k

N

s
k

J U U  


       

It can be seen that ( )J   is a highly nonlinear function of the model parameter   to be inferred 

in this exercise.  
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Appendix 1.1: Solution of equation of motion for the falling object 

 

Introducing the velocity of the object, the set of equations describing the motion is the following 

 

2      (1)

               (2)

d
g c

dt
dz

dt

 



 


  

with initial conditions 0 0( )z t z  and 0 0( )t  . 

From (1) we get 

 
0 0

2

1 t

t

d dt
g c









    (3) 

The integrand can be written as 

 
2

1 1 1 1

2g c g g c g c  
 

  
   

  

Using this 

 
0 0 0

1 22

1 1 1 1 1
( )

2 2
d d d I I

g c g g c g c g

  

  

  
  

 
        

     (4) 

Calculating the integrals 1I  and 2I  we get that 

 0

0

1 0

0

2 0

0

1 1 1
ln ln ln

1 1 1
ln ln ln

g c
I d g c g c

g c c c g c

g c
I d g c g c

g c c c g c










  

 


  

 

          

        




  

 Using (3) and (4)  

 0

0 0

1 1 1
ln ln

2

g c g c
t t

gc c g c c g c

 
 

  
    

   
  

After manipulating this expression one derives 

 
   
   

0

0

0

ln 2 ( )
g c g c

gc t t
g c g c

 

 

 
 

 
  

Assuming that 0 0( ) 0t    we get 
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 
  0ln 2 ( )

g c
gc t t

g c






 


  

Introducing 
g

c
    the expression takes the form 

  0exp 2 gc t t
 
 




    
  

Manipulating the expression we result in 

    0tanht gc t t 
      

 

From (2) by integration we get 

  
0 0

0tanh
z t

z t

dz gc t t dt
       

Using the known resultthat tanh ln cosh const .xdx x   we can get 

    
0

0 0 0

1 1
ln cosh ln cosh

t

t
z z gc t t gc t t

c c
               

Assuming that 0 0( ) 0z t z   we finally derive that  

    0

1
ln coshz t gc t t

c
      
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Appendix 1.2 Analytical Expressions for Derivatives and Hessian of ( )L   

Assuming uniform prior distribution, from Bayes rule we have 

 
 

   11
ˆ ˆ ˆ ˆ( | z) * (z | ) exp z z( ) z z( )

22 det
N

Const
p Const p   



        
 

  

The function to be minimized is 

 ˆ( ) ln['posterior'] ln[ ( | z)]L p       

from which we get 

      11 1
ˆ ˆ( , ) z z( ) ( ) z z( ) ln det ( ) .

2 2
L Const               

where we separated the parameters in model parameters   and prediction error parameters  . For 

uncorrelated measurement only errors we have 2   , and thus   .  

Assuming that   is also a parameter (not fixed) we get  

2
2

1

1
ˆ( , ) [z ( , )] ln .

2

N

kL z t N Const


   
 

     

The derivatives of ( , )L    with respect to ,   are obtained analytically in the form 

2
2 2

1 1

1 1
ˆ ˆ[z ( , )] ( ( , ) z )

2 k k
i i i

L z
z t z t 

 

 
    

 

 

   
       

     

and 

 2 2
2 3

1 1

1 1 1
ˆ ˆ[z ( , )] ln [z ( , )]

2 k k

L
z t z t 

 

  
     

 

 

               
   

where 
i

z





  depends on the parameter used in i . 

The elements ijH  of the hessian matrix of ( , )L    are 

 
2 2

2
1

1
ˆ( ( , ) z )k

i j j i i j

L z z z
z t 




      





               
   

 
2

2
2 4 2

1

3
ˆ[z ( , )]k

L
z t




  





 
  

    

 
2

3
1

2
ˆ( ( , ) z )k

i i

L z
z t 




   





  
      

   
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In the falling object problem we got that  

   0

1
( , ) ln coshz z t gC t t

C         

and that  

1 1

2 2

( , )

( , )

... ...

( , )N N

z t z

z t z
z

z t z






   
          
   
      

, 

where  0, ,g C t  . 

The first derivatives of z  are 

 
   0 0tanh

2

t t gC t tz

g gC

 
    


 

      00 0

2

ln coshtanh

2

gC t tt t g gC t tz

C CC gC

 
        


 

 0

0

tanhgC gC t tz

t C


    


 

Introducing  0tanhT gC t t
    , we get  

 
 0 *

2

t t Tz

g gC
 




  

 
 0 *

2

t t g Tz z

C CC gC
 

 


  

 
0

*gC Tz

t C





  

 

while the derivatives of T  with respect top the parameters are given by  

  2
01

2

T C
T t t

g gC



  


 

  2
01

2

T g
T t t

C gC



  


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 2

0

1
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T gC
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
 

Finally, the second derivatives of z  are obtained in the form  

  
2

02

2

4

T C
gC T

g gCz
t t

g gC

 


 


  
2

0

2

4

T g
gC T

C gCz
t t

g C gC

 


 
 

 

 
 02

0

0 2

T
T t t

z t

g t gC


  

 


 
  

 
 

2/3 1/2
2
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T z
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 
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2
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C t t C tC gC

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