Bayesian Model Comparison/Selection/Preference

QUESTION

More than one models are introduced to explain the data.
Which model should be preferred or how should we rank
the models given the data?

Occam’s razor advises to buy the simplest model among
all that adequately explain the data.

Bayesian methods can consistently and quantitatively
solve the model selection problem.

Bayesian inference ranks the models and based on the
rank can use all models for robust predictions, taking into
account the relative preference/ranking of each model.




Bayesian Inference

Level 1: Parameter Estimation Given a Model

Posterior Likelihood Prior
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Asymptotic Approximation

Posterior PDF is Gaussian

(6| D,M) ~ N(0,H *(9))

Centered at the most Probable Model: 6 = arg min[L(9)]
with covariance the inverse of the Hessian of: L (8) ’
L(€)=—Inp(@|D,M)
= —In[Likelihood x Prior]



Bayesian Inference

Level 1: Parameter Estimation Given a Model

Posterior Likelihood Prior
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Level 2: Model Selection/Preference

P(M; D) o p(D|M;) P(M,)

Preference Evidence Prior

Evidence of Model

p(DIM) = [ p(D16.M) 7(6, IM,) dé,
= [exp[-L(6,)] do,

Laplace-type Integral



Laplace Asymptotic Approximation
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Evidence of Model

p(DIM) = [ p(D]6,M,) 7(6; IM,) df
= [exp[-L(6))] o,
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Bayesian Inference: Single Parameter Case
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Evidence of Model

p(DIM) = p(D|6,M) 7,(0|M) o,q
Likelihood at the Occam Factor

best fit that the Penalizing model for having

model can achieve the parameter



Interpretation of Occam Factor: 1-d Case
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- Ratio of the posterior accessible volume of the parameter space to the prior accessible volume
- Factor by which the model hypothesis space collapses when the data arrives
- Measure of theamount of the information we gain about themodel parameters given the data

- Represents a penalty against parameterization. Depends on the number of model parameters
(complexity of the model) and their assigned prior probability

- The greatest evidence between models is determined by a trade-off minimizing the
model complexity measure and minimizing the data misfit



Interpretation of Occam Factor: 2-d case
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Occam Factor for Large Number of Data
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Consider Gaussian prior, then the log of the Occam factor is
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- Occam factor is negative
- Is expected to decrrease if the number of model parameters is inclreased

- Using the fact that the posterior variances is inversely proportional to the number of data
one can derive for large number of data
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Model Evidence

In p(D|M) =~ In p(D|é,l\/\)]+In7z9(5|lv\)+%[nln(27z)—det H(é)]

In p(D | M) = In p(D|6?A,M)—%nlog N

- First asymptotic approximation requires Hessian evaluation and is more accurate for
small number of data

- Second asymptotic approximation does not require Hessian evaluation



