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1 Prior System Analysis - Uncertainty Propagation  

Consider the mathematical model of a physical process/system represented by the equation  

 ( , )Y g X U E    (1) 

where nX R  are uncertain parameters of the mathematical model of the system, mY R  is the 

output quantity of interest (QoI), pU R  is the parameter set that defines the input which can 

also be uncertain, and mE R  represents the model error which is quantified by a multivariate 

Gaussian distribution (0, )E N S , where m mS R  . Given the uncertainty in the parameters X  
and the input U , one is interested in the uncertainty in the output QoI Y . Let ( )f x  be the joint 

PDF that quantifies the uncertainty in the parameter set X . Let also   and   be the mean and the 

covariance matrix of the uncertain parameter set X . Similarly, let ( )f u  the joint PDF that quantifies the 

uncertainty in the input parameter set U , with U  and U  the corresponding mean and covariance 

matrix. The uncertainty in the output QoI can be quantified by the joint PDF ( )f y  or simplified 

measures of uncertainty such as the mean Y  and covariance matrix Y .  

There are special cases of the general mathematical model (1) that will be used to demonstrate the 
theoretical developments. Specifically, a linear model with a single output QoI is given in the form 

 Y AX E    (2) 

where n nA R   is a matrix that defines the system. A special subcase of this model arises for a 
scalar QoI Y R  ( 1m  ) in which case the model error E R . A nonlinear model with a single 
output QoI is given by  

 ( )Y g X E    (3) 

where ( )g X  is a known nonlinear function of X  that arises from the mathematical model of the 

system,Y R  ( 1m  ) , and the model error E R . Finally another special case is the 
mathematical model (1) that does not depend on the input quantities in U , that is, the system 
representation  

 ( )Y g X E    (4) 

where ( ) mg X R  is a known nonlinear vector function of X  that arises from the mathematical model of 

the system.  

There are a number of methods for propagating the uncertainty in the model parameters and the input 
through the input-output relationship ( , )Y g X U  to obtain the uncertainty in the output QoI. Exact 

techniques are only available for linear models of the type (2). For nonlinear model, analytical 
approximations are also available. Next, we present the formulation for linear models and then we 
generalize the formulation for nonlinear models using analytical approximate techniques based on the 
Taylor series expansion of the nonlinear vector function ( , )g X U  in terms of X  and U . 
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1.1 Simple Measures of Uncertainty of QoI – Mean and Covariance  

1.1.1 Linear Model 

Consider the linear model (2), i.e.  

 Y AX E   

Given any distribution ( )f x  of the parameter set X  with mean   and covariance matrix  , one can 

proceed to obtain analytical expressions for the mean and the covariance matrix of the QoI Y . 

Specifically, the mean of Y  is given by  

 [ ] [ ] [ ] [ ] 0Y E Y E AX E AE X E E A A           

The covariance matrix is obtained as  
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Assuming further that the parameter set is a multivariate Gaussian vector, one can easily verify from the 
linear model relationship that the output QoI Y  is also multivariate Gaussian vector 

( , )TY N A A A S    with joint PDF given by  
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1.1.2 Nonlinear Model 

Consider the nonlinear model (2) for a scalar output QoI ( 1m  ), i.e.   

 ( )Y g X E   

Given any distribution ( )f x  of the parameter set X  with mean   and covariance matrix  , one can 

proceed to obtain analytical expressions for the mean and the covariance matrix of the scalar QoI Y . 
Specifically, the mean of Y  is given by  

 [ ] [ ( ) ] [ ( )] [ ] [ ( )]Y E Y E g X E E g X E E E g X         (5) 

 

The second moment of Y  is given by  
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2[ ] [ ] [{ ( ) }{ ( ) } ]

         [ ( ) ( ) ( ) ( ) ]

         [ ( ) ( )] [ ( ) ] [ ( )] [ ]

         [ ( ) ( )] 0 0

         [ ( ) ( )]

T T

T T T T

T T T T

T

T

E Y E YY E g X E g X E

E g X g X g X E Eg X EE

E g X g X E g X E E Eg X E EE

E g X g X S

E g X g X S

    

   

   

   

 

   (6) 

and can be used to obtain the variance of Y  by the relationship  

 2 2 2[ ]Y YE Y    

1.1.3 Analytical Approximations based on Taylor Series Expansion (First and Second-
Order Perturbation Techniques) 

For a general function ( )g X , the expectations [ ( )]E g X  in (5) and [ ( ) ( )]TE g X g X  in (6) cannot be 
computed analytically. Analytical approximations are possible by using a Taylor series approximation of 

( )g X  about the mean value or the most probable value, say 0x , of X . The analytical approximations are 

first presented for the case of a scalar uncertain parameter X  and then are generalized to cover the 
multidimensional case.  

(a) One-Dimensional Case 

Assuming that X  is a scalar X , the Taylor series expansion of the function ( )g x  about the mean value 

or the most probable value, say 0x , of X , keeping only up to the quadratic terms is  
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The quadratic expansion of ( )g x  with respect to x  is valid only sufficiently close to the point 0x . The 

accuracy depend on the form of ( )g x  around this point.  

The expectation [ ( )]E g X  in (5) takes the form  
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where the expressions were simplified using that 0 0 0[( )] [ ] [ ]E x x E x E x x      and  
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Similarly, the 2[ ( )]E g X  in (6) takes the form  
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Both the expectations depend on the first and second-order derivatives of the function ( )g x  with respect 

to the parameters in x  and the first two moments, mean   and variance  , of the uncertain parameter 

X .  

For the case for which 0x  is chosen to be the mean value   of X , the aforementioned expectations 

simplify to  
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and 
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  (8) 

Note that in this case the first and second-order derivatives of the function ( )g x  with respect to the 

parameters in x  are evaluated at the mean  , while the expressions also depend on the variance   of the 

uncertain parameter X .  

(b) Multi-dimensional Case 

For the multidimensional uncertain parameter case, keeping the first three terms in the Taylor series, one 
has that 
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where 0 0( ) . ( )TH x g x  is the Hessian of the function ( )g x  and 0( )ijH x  is the ( , )i j  component of 

the Hessian matrix 0( )H x . The quadratic expansion of ( )g x  with respect to x  is valid only sufficiently 

close to the point 0x . The accuracy depend on the form of ( )g x  around this point.  

The expectation [ ( )]E g X  in (5) takes the form  
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which depends on the first and second-order derivatives of the function ( )g x  with respect to the 

parameters in x  and the first two moments of the uncertain parameter X . Similarly, the 

[ ( ) ( )]TE g X g X  in (6) takes the form  
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Both the expectations depend on the first and second-order derivatives of the function ( )g x  with respect 

to the parameters in x  and the first two moments of the uncertain parameter set X . 

For the case for which 0x  is chosen to be the mean value   of X , the aforementioned expectations 

simplify to  
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A similar Taylor series analysis can be used to handle the multi-dimensional QoI mY R  defined in (4).  

1.2 Reliability Measures  

Often in systems one is interested in finding the probability an uncertain output QoI Y  exceeds a 

level 0y  which is usually associated with unacceptable performance of the system. Using the fact 

that ( )Y g X  where Y  is a general function of the uncertain model parameters X , this problem 

is mathematically stated  

 0Pr[ ( ) ]F g X y   

where F  is known as the probability of unacceptable performance or failure probability. 
Introducing the limit state function 0( ) ( )h x y g x  , the aforementioned failure probability 

problem is stated and represented as  
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same point with respect to the original system by the transformation u Qz , where Q  is an orthonormal 

matrix satisfying T TQQ Q Q I   and det | | 1Q Q  . The transformation u Qz  results in standard 

Gaussian variables (0, )u N I  since the transformation is linear, the mean u  is 

[ ] [ ] 0 0E u QE z Q    and the covariance matrix of u  is 

[ ] [ ]T T T T TE uu QE zz Q QIQ QQ I    .  

Let   be the minimum distance of the origin of the space from the hyperplane. A two-dimensional 

representation of the new system and the distance   is shown in Figure 2. It can easily be verified that the 

failure domain given by the points in space that satisfy ( ) 0Th z a b z    can also by expressed in the 

new coordinate system by the points in space that satisfy 1u   for any values of the other coordinates 

2 , , nu u . Thus the probability of failure in (11) simplifies to  
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  (12) 

Thus the failure probability in this case depends on the minimum distance   of the origin in the 

parameter space from the hyperplane. The variable   related to the safety of the system and is called the 

safety index. The point *z  (see Figure 2) on the hyperplane that is closest to the origin is obtained by 

minimizing the distance Tzz  of a point z  in the parameter space subject to the constraint that the point z  

lies on the hyperplane. Specifically, introducing the Lagrange multiplier  , this constrained optimization 
problem is formulated as unconstrained optimization problem of minimizing the augmented function  

 ( , ) ( )T TJ z zz a b z     

with respect to z  and  . The conditions for minimum are that  

 * *( , ) 0J z z b      

and  

 *( , )
0TJ z

a b z





  


 

Solving the first condition gives that * *z b   and substituting in the second condition one derives that 
*( ) 0Ta b b    or equivalently that * 2/ ( ) / | |Ta b b a b   . As a result the point *z  of the 

hyperplane closest to the origin is * * 2( / | | )z b a b b    . Thus the safety index   is given by  

 *
2

| | | |
| | | |
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z b

b b
      (13) 

 




