
3. Bayesian Approach for 
Parameter Estimation in Structural 

Dynamics Using Modal Data 

3.1 Introduction 

The Bayesian framework for parameter estimation is used to address the problem of 
estimating the uncertainty in the values of the parameters of structural dynamics 
models based on the measured modal data. The model class used to represent the 
structural behavior is considered to be linear. Prediction errors, measuring the fit 
between the measured and the model predicted modal properties, are modeled by 
Gaussian distributions.  

3.2 Bayesian Parameter Estimation Utilizing Modal Data 

Let 0( ) ( )ˆ{ˆ , , 1, , , 1, , }k k N
r r DD R r m k Nw= Î = = f  be the measured modal 

data from a structure, consisting of modal frequencies ( )ˆ krw and modeshape components 
( )ˆ k
rf  at 0N  measured DOFs, where m  is the number of observed modes and DN  is 

the number of modal data sets available. Consider a parameterized class of linear 
structural models used to model the dynamic behavior of the structure and let 

NR qÎq  be the set of free structural model parameters to be identified using the 
measured modal data. Let also ( ) ( ){ , , 1, , }dN

r r R r mw Î = q f q , where dN  is 
the number of model degrees of freedom (DOF), be the predictions of the modal 
frequencies and modeshapes obtained for a particular value of the parameter set q  by 
solving the eigenvalue problem corresponding to the model mass and stiffness matrices 

( )M q and ( )K q , respectively, that is,  

  2[ ( ) ( ) ( )] ( )
r r

K Mw- = 0q q q f q  (3.1) 

The objective in a modal-based Bayesian structural identification methodology is to 
estimate the uncertainties in the values of the parameter set q  so that the modal data 
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{ ( ),  ( ),  1, , }r r r mw = q f q  predicted by the linear class of models best matches, 
in some sense, the experimentally obtained modal data in D . 

The Bayesian approach uses probability distributions to quantify the plausibility of 
each possible value of the model parameters q . Using Bayes’ theorem, the updated 
(posterior) probability distribution ( | , , )p D Μq s  of the model parameters q  based 
on the inclusion of the measured data D , the modeling assumptions Μ  and the value 
of a parameter set s , is obtained as follows: 

  ( | , , )  ( | , , ) ( | , )p D c p D p=Μ Μ Mq s q s q s  (3.2) 

where ( | , , )p D q s Μ  is the probability of observing the data from a model 
corresponding to a particular value of the parameter set q  conditioned on the 
modeling assumptions Μ  and the value of s , ( | , )p q s M  is the initial (prior) 
probability distribution of a model, and c  is a normalizing constant selected such that 
the PDF ( | , , )p Dq s Μ  integrates to one. Herein, the modeling assumptions Μ  refer 
to the structural modeling assumptions as well as those used to derive the probability 
distributions ( | , , )p D q s Μ  and the prior ( | , )p q s M . The parameter set s  
contains all parameters that need to be defined in order to completely specify the 
modeling assumptions Μ . Measured data are accounted for in the updated estimates 
through the term ( | , , )p D q s Μ , while any available prior information is reflected in 
the term ( | , )p q s M . From the experience is usually assumed 
( | , ) ( )p constantp= =q s qM  (a non-informative prior distribution). Other prior 

distribution can be assumed as well. In order to simplify the notation, the dependence 
of the probability distributions on Μ  is dropped in the analysis that follows. 

The form of ( | , , ) ( | , )p D p DºΜq s q s  is derived by using a probability model 
for the prediction error vector ( ) ( ) ( )

1[ , , ]k k k
me e= e , 1, , Dk N=  , defined as the 

difference between the measured modal quantities involved in D  for all 1, ,r m=   
modes and the corresponding modal quantities predicted from a model that 
corresponds to a particular value of the parameter set q . Specifically, the prediction 
error ( ) ( ) ( )[  ]k k k

r r r
ew f=e e  is given separately for the modal frequencies and the 

modeshapes by the prediction error equations: 

  ( ) ( )ˆ ( ), 1, ,
r

k k
r re r mw w w= - = q  (3.3) 

                       ( ) ( )
0

ˆ ( ), 1, , , 1, ,
jr

k k
jr jre j N r mf f f= - = = q  (3.4) 

where ( )

r

kew  and ( )

jr

kef  are respectively the prediction errors for the modal frequency and 
modeshape components of the r -th mode, 1, , Dk N=  , m  is the number of 
identified modes and 0N  is the number of sensors. 
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In order to simplify the notation, equation (3.4) can be rewritten in the vector form 

  ( ) ( ) ( )
0

ˆ ( ) 1, ,k k k
r r rr

L r mb= - = ef f f q  (3.5) 

where ( ) ( )ˆ /k k T T
r r r r rb = f f f f  is a normalization constant that accounts for the 

different scaling between the measured and the predicted modeshape for given 
parameter set q  and 0L  is a 0 dN Ń  matrix ( dN  is the total number of the model 
degrees of freedom) of ones and zeros that maps the model DOFs to the measured 
degrees of freedom. 

Following the Bayesian methodology, the predictions errors are modeled by zero-mean 
Gaussian vector variables. Specifically, the prediction error ( )

r

kew  for the r -th modal 
frequency is assumed to be a zero mean Gaussian variable, ( ) 2 ( )2~ (0, ˆ )k k

rr r
e Nw ws w , with 

standard deviation ( )ˆ krrw
s w . The prediction error parameter 

rw
s  represents the 

fractional difference between the measured and the model predicted frequency of the 
r -th mode. The prediction error for the r -th truncated modeshape vector ( ) 0k N

r
RÎef  

is also assumed to be zero mean Gaussian vector, ( ) ( )~ ( , )
r r

k kN C0ef f , with covariance 
matrix ( ) 0 0k N N

r
C R ´Îf , where ( , )N S  denotes the multidimensional normal 

distribution with mean   and covariance matrix S . In the analysis that follows, a 
diagonal covariance matrix 

0

2
( ) 2 ( )ˆ
r r

k k
r N

C s=f f f  is assumed, where 
2 2

( ) ( )
00

ˆ ˆ /k k
r rN

N=f f ,   is the usual Euclidian norm and I  is the identity matrix. 
The prediction error parameter 

r
sf  represents the difference between the measured 

and the model predicted component of the r -th modeshape relative to an average 
value 

0

( )ˆ k
r N
f  of the modeshape components. The parameters 

rw
s  and 

r
sf , represent 

the prediction error estimates of the measured modal frequencies and modeshapes 
involved in D . 

3.3 Formulation for ( | , )p D q s  Using the Gaussian Probability 
Distribution for Model Prediction Error 

In the analysis that follows, the parameter set s  is taken to contain the parameters 

rw
s  and 

r
sf , 1, ,r m=  . Given the values of the parameter set s , assuming 

independence of the prediction errors ( )k
re  and using the Gaussian choice for the 

probability distribution of the prediction errors ( )

r

kew  and ( )k

r
ef , the probability 

( | , )p D q s  of observing the data from a model within the class of models Μ  is 
estimated as follow: 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 1

ˆ ˆ ˆ( | , ) (ˆ , , ˆ , , , | , ) (ˆ | , ) ( | , )
DN m m

k k k k k k
r m r r

k r r

p D p p pw w w
= = =

é ù
= = ⋅ê ú

ê úë û
   q s f f q s q s f q s (3.6) 

Since ( )rw q  in equation (3.3) is a deterministic quantity and the predictions errors 
( )

r

kew  are modeled by zero-mean Gaussian scalar variables so that 
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( ) 2 ( )2(0, ˆ )
r r

k k
re Nw ws w , the measured modal frequencies ( )ˆ krw  are also implied to be 

Gaussian variables, that is, ( )( ) 2 ( )2ˆ ( ), ˆ
r

k k
r r rN ww w s w q  with mean ( )rw q  and 

variance 2 ( )2ˆ
r

k
rws w . Therefore, the probability density function (PDF) of ( )ˆ krw  involved 

in (3.6) given the values of q  and s , is given by 

  ( )
( )( )2( )

( )
( ) 2 ( )2

ˆ1 1
ˆ | , exp

2 ˆ 2 ˆ

k
r rk

r k k
r rr r

p
w w

w w
w

p s w s w

ì üï ï-ï ïï ï= -í ýï ïï ïï ïî þ

q
q s  (3.7) 

Equivalently, since ( )rf q  in equation (3.5) is a deterministic vector and the 
predictions errors ( )k

r
ef  are modeled by zero-mean Gaussian vector variables so that 

( ) ( )( , )
r r

k kN C0ef f , the measured modeshape components ( )ˆ k
rf  are also implied to be 

Gaussian vector variables, that is, ( )( ) ( )ˆ ( ),
r

k k
r rN C ff f q  with mean ( )rf q  and 

covariance matrix ( )

r

kCf . In that case, the probability density function (PDF) of ( )ˆ k
rf  

involved in (3.6) given the values of q  and s , is given by 

  ( )
( ) 0

2
( ) ( )

0( )
1 ( )2( )

ˆ ( )1 1ˆ | , exp
22 r

r

k k
r r rk

r N kk

L
p

CC

b

p

ì üï ï-ï ïï ï= -í ýï ïï ïï ïî þff

f f q
f q s  (3.8) 

Using the diagonal covariance matrix ( )

r

kCf  with diagonal elements 
0

2
2 ( )ˆ
r

k
r N

sf f  and 
substituting into (3.8), one has 

( )
( ) ( ) ( ) 000

00

2
( ) ( )

0( )
22 ( )( )

ˆ ( )1 1ˆ | , exp
2 ˆˆ2 r

r

k k
r r rk

r NNN kk
rr NN

L
p

b
sp s

ì üï ïï ï-ï ï= -í ýï ïï ïï ïî þ
f

f

f f q
f q s

ff
 (3.9) 

By substituting equations (3.7) and (3.9) into equation (3.6), one derives that 

( )( )2( )

( ) 2 ( )2
1 1

ˆ1 1
( | , ) exp

2 ˆ 2 ˆ

D

r r

kN m
r r

k k
k r r r

p D
w w

w w
p s w s w= =

ì üï ï-ï ïï ï= - ´í ýï ïï ïï ïî þ


q
q s

 

    
( ) ( ) ( ) 000

00

2
( ) ( )

0
22 ( )( )1 1

ˆ ( )1 1
exp

2 ˆˆ2

D

r
r

k kN m
r r r

NNN kkk r
rr NN

Lb
sp s= =

ì üï ïï ï-ï ï´ -í ýï ïï ïï ïî þ


ff

f f q

ff
 (3.10) 

which successively simplifies to 

( ) ( )

( )( )2( )

2 ( )2
( ) 1 1

1 1 1

ˆ1 1 1
( | , ) exp

2 ˆ
2 ˆ

D

D
DD

r

r

kNm
r r

N m m kNmN k r k r
r

k r r

p D
w

w

w w
s wp w s = =

= = =

ì üï ï-ï ïï ï= - ´í ýï ïï ïï ïî þ
å å

 

q
q s  
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( ) ( ) ( )0 00

0
0

2
( )

0
22 ( )( ) 1 1

1 1 1

ˆ ( )1 1 1
exp

2 ˆˆ2

D

D
DD

r

r

kNm
r r r

N m mN kN NmN N k r k
r Nr N

k r r

Lb
sp s = =

= = =

ì üï ïï ï-ï ï´ -í ýï ïï ïï ïî þ
å å

  f
f

f f q

ff
 

and  

( ) ( ) ( )00
0

0

( 1) ( ) ( )

1 1 1

1
( | , )

ˆ2 ˆ
D

D
D D

r r

N m mNm N N k k N N N
r r N

k r r

p D

wp w s s
+

= = =

= ´

  f

q s
f

 

       
( )( )

0

22( ) ( )
0
22 ( )2 2 ( )

1 1 1

ˆˆ ( )1 1 1
exp

2 ˆ ˆ

D D

r r

k kN Nm
r r r r r

k k
r k kr r N

L

w

w w b
s w s= = =

ì üï ïï ï- -ï ï´ - +í ýï ïï ïï ïî þ
å å å

f

q f f q

f
 (3.11) 

Equation (3.11) can be rewritten in the form 

  
( ) { }1

( | , ) exp ( ; )
22 ( )

D

D
DNN

NN
p D J

b p r
= -q s q s

s
 (3.12) 

where   
2

1

( ; ) ( )
n

i
D i

i i

J J
a
s=

= åq s q  (3.13) 

with ( ) ( )
iiJ Jw=q q , ( ) ( )

im iJ J+ = fq q , 1,...,i m= , 2n m= , represents the 
weighted measure of fit between the measured modal data and modal data predicted by 
a particular model within the selected model class, ( )

i
Jw q  and ( )

i
Jf q  are defined by 

  
( ) 2

( ) 2
1

[ ( ) ˆ ]1
( )

[ ˆ ]

D

r

N k

r r
k

kD r

J
Nw

w w

w=

-
= å

q
q  (3.14) 

and  

  

2
( ) ( )

0

2
( )1

ˆ( )1
( )

ˆ

D

r

k kN
r r r

kkD
r

L
J

N

b

=

-
= åf

f q f
q

f
 (3.15) 

respectively, 

  ( )
1

( ) i D

n
NN

i
i

ar s
=

=s  (3.16) 

is a function of the prediction error parameters s , ( )0 1N m N= +  is the number of 
measured data per modal set, 1/r Na = and 0/m r N Na + = , 1, ,r m=  , 
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satisfying 
1

1
n

i
ia

=
=å , represent the number of data contained in each modal group in 

relation to the total number N  of data, and 

  ( )0

0

( ) ( )

1 1

ˆˆ
DN m N

k k
r r N

k r

b c constantw
= =

= = = f  (3.17) 

Assuming that the prediction error parameters 1rw
s s= , 1, ,r m=  , are the same 

for all the modal frequencies for each data set 1, , Dk N=   and that 2r
s s=f , 

1, ,r m=  , are the same for all modeshapes for each data set 1, , Dk N=  . In this 
case, 2n= , the prediction error parameters are 1 2( , )s s=s , the two measures of fit 
are given by  

  1
1

1
( ) ( )

r

m

r

J J
m 



 q q  (3.18) 

and  

  2
1

1
( ) ( )

r

m

r

J J
m 

 q q  (3.19) 

respectively, and the exponents ia  appearing in (3.16) are given by 1 /m Na =  and 

2 0/mN Na = . 

3.4 Optimal Value of Structural Model Parameter given the 
Prediction Error Parameters 

Given the values of the prediction error parameters s , the optimal value of the model 
parameter set q  corresponds to the most probable model maximizing the updated PDF 
( | , , )p Dq s Μ  given in (3.2). In particular, using (3.12) and assuming a non-

informative prior distribution ( | , ) ( )p constantp= = " Îq s q qM Q , where Q  
is the domain of definition of q , the optimal values q̂  of the model parameters q  are 
equivalently obtained by minimizing the measure of fit ( ; )DJ q s  defined in (3.13), i.e. 

  (̂ ) argmin ( ; )DJ=
q

q s q s  (3.20) 

The notation (̂ )q s  is used to show that the optimal value q̂  depends on the values of 
the prediction error parameter set s . 

Hybrid algorithms based on evolution strategies and gradient methods are well-suited 
optimization tools for solving the resulting non-convex optimization problem and 
identifying the global optimum from multiple local ones. 
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3.5 Remarks 

The methodology can readily be applied to alternative modal residual metrics that 
measure the fit between experimental and model predicted modal data. The 
formulation can be extended to identify the structural parameters of linear and non-
linear models using measured acceleration time histories instead of modal properties. 


