Example on Multi-dimensional parameter inference: Data fitting

Application of Multi-Dimensional Bayesian Inference on Data Fitting

Consider the problem of fitting a parameterized curve Y=F(X;a) to a set of data

D =(Y,,X),k=1...,N. The following general form of the parameterized model is assumed
n

y=F(xa)=>af(0)=f"(xa (1)
i=0 -

where LT (x) =[f,(X), f,(x),--, f,(X)] are user-selected known bases functions, and & are unknown

parameters to be estimated using the data. The functions LT (X)=[f,(X), f,(X),--+, f,(X)] can be

orthogonal functions taken, for example, as a polynomial basis.

Figure 1. Data points in space (X, Y) and fit by linear and quadratic models y = f T (x)a.

To account for model and measurement errors, assume the prediction error equation
Y = F(X;a)+e (2)

which represents the fact that predictions from the model equation can not match exactly the
measurements. There is an error €, between the data point Y, and the assumed parameterized model

prediction F (X, ;a), estimated from (1) evaluated at position X, . The prediction errors €, are assumed to

be ii.d Gaussian with e~ N(O, o’), where ¢’ is unknown. Assuming uniform priors, with large
enough bounds, find:

1. The posterior distribution p(a,o” | D, 1) of the model and prediction error parameters
2. The best estimates of a,c”

3. The spread of uncertainty about the best estimate in the parameter space

4. The asymptotic estimate of the posterior distribution p(a,o”|D,1).

5. The marginal posterior distribution p(a | D, ).
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6. Let Zz=G(Yy)+n be a relation between an output Qol and the measured quantity Yy , with
77~ N(0,s%) and s° is known. Quantify the uncertainty on Z by computing the distribution p(z|D,1).

The uniform prior distribution is 7(a,0° |1)=const, 8 . <a<a__, 0<o’ <o with very large

X

bounds of the support of the uniform PDF.
Repeat the steps 1-6 assuming a Gaussian prior PDF p(a|l)=N(a|x,,%,) . [Left as an Exercise]

Solution
1. Posterior PDF

The joint posterior PDF of the unknown parameters @ and o’ is obtained by applying the Bayes rule:
p(D|a,o’, Nx(a,0” [1)
p(D1)

Assuming that the data is independent, the likelihood p(D|a,o”,1) is estimated as follows

p(a,c’|D,l)= o« p(D,a,c’, 1)

N
p(Dla,c”, 1)=p({Yp-nVu} @07 1) =] Py, 12,07, 1)
k=1

Using the prediction error equation (2), the fact that the prediction error term €, follows a Gaussian

distribution and that F(X,;a) is deterministic given a, the data point X, then follows a Gaussian

distribution with PDF N(y, | F(X;a),07) given by

1 1
p(yk |§30291) = \/EU exp{— 20_2 [yk - F(Xkag)]z}

Thus, the joint posterior PDF is

1
20°

1 N 2
p(g,ale,l)oc—Nexp{— Y —F(X;a) }ﬁ(g,azll)
V2r) ot kz;[ ]

N
Introduce the function J(a) = Z[yk - F(Xk;gl)]2 , which measures the fit or the mismatch between the
k1

measured data and the predictions from the model. The expression for the posterior PDF becomes:

1
207

1
p(g’GZ | D’ I):—Nexp{_ ‘](g)} ﬂ(gaaz |I)
2z ) oM

2.  Maximum a posteriori estimate (MAP) or most probable value (MPV) or Best Estimate

Introducing the Log-Posterior function

L(a,c*)=-Inp(a,c’|D, |)=%10gff2+21 J(@)-logz(a,o” | 1)

2
o

the best estimates satisfy:
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g_L =0,j=0,...n ©
a, ad

oL

00’ |a=a =0 @)

o?=6?

For a uniform prior,

ol 1 a)
oa, 267 da,

=0, j=0,....n,

a=a

g:
2

a
o=

~2
log

which is equivalent to minimizing J (@) with respect to the parameters a. Note that J (@) is a measure of

fit between measurement and predictions from the model. Alternatively is called sum of squares of the
residuals and the value & is called the least squares estimate.

Equation (4) becomes:

oL N1 11
=———-——J(@)=0
do’lea  26° 26" @
which yields
SR B
o =—1J(a 5
N (a) )

Thus the MPV (or best estimate) of the variance of the prediction error is the average of the residuals
obtained at the most MPV of the model parameters.

Returning now to equation (3), we proceed to solve the system in the special case for which that the
function Y = F(X;a) is linear in @. In this case one has that

N n 2 N 5
0 - f.(x)a 0 —fT
oL@ _ 1 @) _ | Z{y 2 } 2 fooa]
da, 20° o0a; 20’ da. 2o .

J ] J

=73 Z[yk _iT(Xk)§:| fj(xk):_%{z Yi fj(Xk)—|:ZLT(Xk)fj(Xk):|§}

)
T

Therefore, @) =0, ] =0,...,n gives
i laea
N LT .
zyka(Xk):{ZL (Xk)fj(xk)i|§7 J:O,l,,n (6)
k=1 k=1

Introducing the vector

N
Q = Z Yi L(Xk)
k=1

and the matrix
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B{ii(xk)f(xo}

the system of N equations (6) can be re-written in compact matrix form as

Ba=d ™
with the solution

a=B"d ®)

to depend only on the data and the functional form of i(X) . For example, the elements of i(x) can be

any polynomial basis functions. The estimate in (8) obtained for a uniform prior distribution coincides
with the estimate that one obtains from a least squares technique. Note that for stable solution the

functions in f (X) have to be chosen appropriately.
3. Spread of uncertainty in the parameter space
The Hessian matrix of the minus log-posterior function, evaluated at the MPV, is used to estimate the
uncertainty in the model parameters. The elements of partition H®(a,0%) of the Hessian matrix
H(a,o”) associated with the model parameters a is

o’L

a 1 a 1 & T
@0 =g = 2 it = HY@e) =53 T )

Which, by making use of (5), gives

N & ro L
(é);i(xk)i %)==3B

H@@,6% )=
(@,07) ia

Similarly, the partition H'”’(a,5”) of the Hessian matrix H (@, ) associated with the prediction error
model parameter o
o’L

H(a,0°)=———
(— ) 8(0_2 )2 i

The partition H®” (a,57) is given by

o°L 1 | N 1
H®)(a,6%)=———=— fx)=| > fT(x)f(x)|lat=—2'[d-Ba
(@a,07) 80‘4681- o {kZ::,yk ,( k) LZ:,_ ( k) ,( k):|_} ot [d al

A A 1 A .. :
which, due to (7), it gives H®?(4,6°) = A—4QJT [d —B&]=0, where éjT is introduced for mathematical
o

convenience to have all elements equal to zero except the | -th element which is set equal to one. Finally,
the Hessian matrix at the MPV is the block diagonal matrix

1 B 0
H (é’ 6-2) = 6'2 OT N
- 267

and the associated covariance matrix is given by
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B' 0
C=H"(46%)=6" o 2
= N

4. Asymptotic posterior PDF

Using the Bayesian central limit theorem, the asymptotic posterior PDF is Gaussian given by

p(a,c’|D,1)=N|a,0°|

covariance

a| og 42
L (»C@.07)
o S—

mean

or equivalently, using that |C |=v/2/ N&""* |B|_1/2 , one derives

12 . ~T| B 0 .
bt s n+l1 A2 2 A2 T 2 ~2
( /27[) [2/N&™2 26° o -0 0 557 o’ -0
Bl/Z
S exp| - L[(g—éﬂ B(a—4)+—— (oz—&ﬂj
(\/27:) J2/NG™ 20 20

5. Marginal posterior PDF for a

The marginal posterior PDF of the model parameters @ is obtained using the marginalization rule

p(al D,1)= [ p(@,c*| D,1) do? ocof%exp{—%ug)} #(@,0% 1) do? ©
0 OO- (e

Assuming that @ and ¢ are independent prior to the data, i.e. 7(a,6° |1)=7x(a|l)z(c”|1), and that

o’ follows a uniform prior distribution, the integral in (9) can be evaluated analytically using the
following integral value:

J taIH exp(—B/t)dt =T(a)B™*

0

where ['(r) is the Gamma function defined as I’ ( Z) = J-tz_le_tdt .
0

N 1
Lettingt =0, a+1= 5 and f = 5 J(@) the integral is evaluated to be

o0

] %exp{—%u@} r@o 1) do? =r[ﬁ-1j[13(g)}’ @)
o o 2 2

0

Thus, the marginal posterior PDF given by

p(g\D,l)ocrg—lJBJ@)r @l

N
—-—+
2

«J(@) 2 x(@ll) (19
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which for a uniform prior distribution 7(a|l) is a multivariate Student-t distribution. Note that the

estimate (10) assumes that the upper bound O'ia of & is large enough so that the estimate of the integral

in the interval (0, O'fm] is same as the integral in the interval (0,00) and is not affected by the finite value
of oﬁm . It is worth noting that the Student-t distribution tends to a Gaussian distribution for large enough
number of data N .

6. Posterior distribution of an output Qol

The posterior distribution of the Qol Z is formulated using marginalization as follows
p(z| D,1)=[p(z,3,D,1) da=[ p(z|a,D,1) p(a| D,1) da

Using Z=G(y)+7, with 7~ N(0,s%), and that y=F(x;a), the conditional distribution of Z is
Gaussian with mean G(Y) and variance S°, i.e. p(z|a,D,1)=N(z|G(Yy),s*), and thus the posterior
PDF of the Qol is

p(z1D.) = [ exp{—?[z—ca(F(x;g))]z} p(al D, 1da

The integration is usually in a higher dimensional space of the parameter set @ and cannot be carried out
analytically. The integral can be obtained analytically only under special cases. For example, assume that

n

G(y) is linear in Yy, ie. G(Y)=AYy+A, . Since y=2ai fi(X):iT (X) a then the Qol z is also
i=0

linear in the model parameters a

2=G(F(:a)=AYa 00+ A+n=ATa+A +7

and thus the posterior distribution of Z conditioned on a is also Gaussian given by

1 1 - 2
zla,D,l)= exps——|z-Af a-
P(zl.D.1) = —— p{ ol2-Afa Ao]}
The posterior distribution p(z| D, 1) is evaluated by the integral

le_ﬂs exp{—zisz[z—AiTg—Ab]z} p(a| D, 1)da

The problem of evaluating the integral remains since @ is distributed as a student t-distribution.

p(z|D, 1=

Simplifications are possible is @ is considered to be Gaussian, which is true for large number of data.

Then, Z is a sum of Gaussian variables @ and 77 and so the distribution of Z is also Gaussian with mean
2=E[z]=AT (0E[al+A =A T (0a+A

and variance



Example on Multi-dimensional parameter inference: Data fitting

o) =C,=E[(z-2)|= E[{Af(x)(a—é)m}z}
=E[A T (0)(@-a)@-8)fA |+2A 1T (0E[(@-a)]+E[7’]
=A T (0C, F(0A +5* = A" 1 (XC, f (x)+5’
=A* T (x)B™ f(x)67 +5°
where use was made of the fact that C, =B~ and E[(a—-4&)]=E[(a—-4)]E[n]=E[(a-8)]0=0
due to the independence of @ and 7. Thus, the posterior PDF of the Qol becomes

p(z|D,I):\/%G exp{—Z;Z[Z_AliTé_Ab]z}



