Avaxkinon IHinpogopiog

Information Retrieval

ABdoKwV —
Anuntproc Katcapoc

AvGAsEN 4m: 24/02/2014



Faster postings merges:
Skip pointers




& Recall basic merge
&

« Walk through the two postings simultaneously, in
time linear in the total number of postings entries

24— 8~ 16—~ 32—64—128| Brutus

28 -] 117 b21131 | Caesar

If the list lengths are m and n, the merge takes O(m-+n)
operations.

A 4
N
\ 4
Ul
\ 4
(00)

Can we do better?
Yes, if index isn’t changing too fast.

Tu. HMMY, Tovemotiuo Oeccaiiog



_t’\ Augment postings with
ﬁ (at indexing time)
L =

16 128
2418106321041 128

3
123581772131
* Why?
« To skip postings that will not figure in the search
results.
* How?

* Where do we place skip pointers?

Tu. HMMY, Tovemotiuo Oeccaiiog



5
& Query processing with
L =

16 128
248 1673211641128

31
1243 H{5H 8 H 172131

Suppose we’ve stepped through the lists until we
process 8 on each list.

When we get to 16 on the top list, we see that its
successor is 32.

But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Tu. HMMY, Tovemotiuo Oeccaiiog



N
& Where do we place skips?

=4 * Tradeoft:

* More skips — shorter skip spans = more likely to skip.
But lots of comparisons to skip pointers.

« Fewer skips — few pointer comparison, but then long
skip spans = few successful skips.

Tu. HMMY, Tovemotiuo Oeccaiiog



- H.‘
A .:-'. :
i%. Tk

Placing skips

Simple heuristic: for postings of length L, use VL
evenly-spaced skip pointers.

This ignores the distribution of query terms.

Easy if the index 1s relatively static; harder if L
keeps changing because of updates.

This definitely used to help; with modern
hardware it may not (Bahle et al. 2002)

* The cost of loading a bigger postings list outweighs the
gain from quicker in memory merging

Tu. HMMY, Tovemotiuo Oeccaiiog



