
1

Ανάκληση Πληροφορίας

Information Retrieval

Διδάσκων –
Δημήτριος Κατσαρός

Διάλεξη 5η: 26/02/2014

2

Phrase queries

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 3

Phrase queries
• Want to answer queries such as “stanford

university” – as a phrase
• Thus the sentence “I went to university at

Stanford” is not a match.
• The concept of phrase queries has proven easily

understood by users; about 10% of web queries are
phrase queries

• No longer suffices to store only
<term : docs> entries

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 4

A first attempt: Biword indexes
• Index every consecutive pair of terms in the text

as a phrase
• For example the text “Friends, Romans,

Countrymen” would generate the biwords
• friends romans
• romans countrymen

• Each of these biwords is now a dictionary term
• Two-word phrase query-processing is now

immediate.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 5

Longer phrase queries
• Longer phrases are processed as we did with wild-

cards:
• stanford university palo alto can be broken into

the Boolean query on biwords:
stanford university AND university palo AND

palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain the
phrase.

Can have false positives!

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 6

Extended biwords
• Parse the indexed text and perform part-of-speech-tagging

(POST).
• Bucket the terms into (say) Nouns (N) and

articles/prepositions (X).
• Now deem any string of terms of the form NX*N to be an

extended biword.
• Each such extended biword is now made a term in the

dictionary.
• Example: catcher in the rye

N X X N
• Query processing: parse it into N’s and X’s

• Segment query into enhanced biwords
• Look up index

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 7

Issues for biword indexes
• False positives, as noted before
• Index blowup due to bigger dictionary

• For extended biword index, parsing longer queries
into conjunctions:
• E.g., the query tangerine trees and marmalade skies

is parsed into
• tangerine trees AND trees and marmalade AND

marmalade skies

• Not standard solution (for all biwords)

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 8

Solution 2: Positional indexes
• Store, for each term, entries of the form:

<number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 9

Positional index example

• Can compress position values/offsets
• Nevertheless, this expands postings storage

substantially

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 10

Processing a phrase query
• Extract inverted index entries for each distinct

term: to, be, or, not.
• Merge their doc:position lists to enumerate all

positions with “to be or not to be”.
• to:

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
• be:

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

• Same general method for proximity searches

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 11

Proximity queries
• LIMIT! /3 STATUTE /3 FEDERAL /2 TORT Here,

/k means “within k words of”.
• Clearly, positional indexes can be used for such

queries; biword indexes cannot.
• Exercise: Adapt the linear merge of postings to

handle proximity queries. Can you make it work
for any value of k?

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 12

Positional index size
• You can compress position values/offsets: we’ll talk

bout that in lecture 5
• Nevertheless, a positional index expands postings

storage substantially
• Nevertheless, it is now standardly used because of

the power and usefulness of phrase and proximity
queries … whether used explicitly or implicitly in
a ranking retrieval system.

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 13

Positional index size
• Need an entry for each occurrence, not just once

per document
• Index size depends on average document size

• Average web page has <1000 terms
• SEC filings, books, even some epic poems … easily

100,000 terms
• Consider a term with frequency 0.1%

Why?

1001100,000

111000

Positional postingsPostingsDocument size

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 14

Rules of thumb
• A positional index is 2–4 as large as a non-

positional index
• Positional index size 35–50% of volume of original

text
• Caveat: all of this holds for “English-like”

languages

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 15

Combination schemes

• These two approaches can be profitably combined
• For particular phrases (“Michael Jackson”, “Britney

Spears”) it is inefficient to keep on merging positional
postings lists

• Even more so for phrases like “The Who”

• Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme
• A typical web query mixture was executed in ¼ of the

time of using just a positional index
• It required 26% more space than having a positional

index alone

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 16

Dictionary data structures for inverted
indexes

• The dictionary data structure stores the term
vocabulary, document frequency, pointers to each
postings list … in what data structure?

Sec. 3.1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 17

A naïve dictionary

• An array of struct:

char[20] int Postings *
20 bytes 4/8 bytes 4/8 bytes

• How do we store a dictionary in memory efficiently?
• How do we quickly look up elements at query time?

Sec. 3.1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 18

Dictionary data structures

• Two main choices:
• Hash table
• Tree

• Some IR systems use hashes, some trees

Sec. 3.1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 19

Hashes

• Each vocabulary term is hashed to an integer
• (We assume you’ve seen hashtables before)

• Pros:
• Lookup is faster than for a tree: O(1)

• Cons:
• No easy way to find minor variants:

• judgment/judgement
• No prefix search [tolerant retrieval]
• If vocabulary keeps growing, need to occasionally

do the expensive operation of rehashing everything

Sec. 3.1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 20

Root
a-m n-z

a-hu hy-m n-sh si-z

aa
rd

va
rk

hu
yg

en
s

si
ck

le

zy
go

t

Tree: binary tree

Sec. 3.1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 21

Tree: B-tree

• Definition: Every internal nodel has a number of
children in the interval [a,b] where a, b are
appropriate natural numbers, e.g., [2,4].

a-hu
hy-m

n-z

Sec. 3.1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 22

Trees

• Simplest: binary tree
• More usual: B-trees
• Trees require a standard ordering of characters and

hence strings … but we standardly have one
• Pros:

• Solves the prefix problem (terms starting with hyp)
• Cons:

• Slower: O(log M) [and this requires balanced tree]
• Rebalancing binary trees is expensive

• But B-trees mitigate the rebalancing problem

Sec. 3.1

