Avaxkinon IHinpogopiog

Information Retrieval

ABdoKwV —
Anuntproc Katcapoc

Avareén Sn: 26/02/2014

Phrase queries

. Phrase queries
=

- Want to answer queries such as “stanford
university” — as a phrase

* Thus the sentence “I went to university at
Stanford” 1s not a match.

* The concept of phrase queries has proven easily
understood by users; about 10% of web queries are
phrase queries

* No longer suffices to store only
<term : docs> entries

Tu. HMMY, Tovemotiuo Oeccaiiog

5
& A first attempt: Biword indexes

- Index every consecutive pair of terms in the text
as a phrase

* For example the text “Friends, Romans,
Countrymen” would generate the biwords
* friends romans
* romans countrymen

« Each of these biwords 1s now a dictionary term

* Two-word phrase query-processing 1s now
1mmediate.

Tu. HMMY, Tovemotiuo Oeccaiiog

u !I ;! .‘r‘
o F ._:l:;:
| | j

Longer phrase queries

* Longer phrases are processed as we did with wild-
cards:

* stanford university palo alto can be broken into
the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain the
phrase.

/X
Can have false positives!

Tu. HMMY, Tovemotiuo Oeccaiiog

Extended biwords

« Parse the indexed text and perform part-of-speech-tagging
(POST).

* Bucket the terms into (say) Nouns (N) and
articles/prepositions (X).

* Now deem any string of terms of the form NX*N to be an
extended biword.

 Each such extended biword 1s now made a term in the
dictionary.

- Example: catcher in the rye
N X X N

* Query processing: parse it into N’s and X’s
* Segment query into enhanced biwords
* Look up index

Tu. HMMY, Tovemotiuo Oeccaiiog

- H.‘
T e e
-~
'

2 £ g
= =

Issues for biword indexes

- False positives, as noted before
* Index blowup due to bigger dictionary

* For extended biword 1index, parsing longer queries
into conjunctions:

- K.g., the query tangerine trees and marmalade skies
1s parsed into

* tangerine trees AND trees and marmalade AND
marmalade skies

* Not standard solution (for all biwords)

Tu. HMMY, Tovemotiuo Oeccaiiog

Solution 2: Positional indexes

Tu. HMMY, Iavemotmo Oscootiog

%\
ﬁ - Positional index example

<be: 993427;

1: 7,18, 33,72, 86, 231;

Which of docs 1,2.4,5
2: 3, 149; < could contain “to be
4: 17,191, 291, 430, 434;

or not to be”?
5: 363,367, ..>

* Can compress position values/offsets

* Nevertheless, this expands postings storage
substantially

Tu. HMMY, Tovemotiuo Oeccaiiog

- H..
T S
= o
.
. -

Processing a phrase query

« Extract inverted index entries for each distinct
term: to, be, or, not.

* Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

* to.

« 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

* be:
« 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

« Same general method for proximity searches

Tu. HMMY, Tovemotiuo Oeccaiiog

10

¢ Proximity queries
7

« LIMIT! /3 STATUTE /3 FEDERAL /2 TORT Here,
/K means “within kK words of”’.

» Clearly, positional indexes can be used for such
gueries; biword indexes cannot.

o EXercise: Adapt the linear merge of postings to
handle proximity queries. Can you make it work
for any value of k?

Tu. HMMY, Tovemotiuo Oeccaiiog 11

& Positional index size

= =

* You can compress position values/offsets: we’ll talk
bout that 1n lecture 5

* Nevertheless, a positional index expands postings
storage substantially

* Nevertheless, it 1s now standardly used because of
the power and usefulness of phrase and proximity
queries ... whether used explicitly or implicitly in
a ranking retrieval system.

12
Tu. HMMY, Tovemotiuo Oeccaiiog

& Positional index size

= -

* Need an entry for each occurrence, not just once
per document

* Index size depends on average document size
+ Average web page has <1000 terms Whv?

- SEC filings, books, even some epic poems ... easily
100,000 terms

* Consider a term with frequency 0.1%

Document size Postings Positional postings

1000 1 1
100,000 1 100

1
Tu. HMMY, Tovemotiuo Oeccaiiog 3

- H..
T S
= o
.
. -

Rules of thumb

* A positional index 1s 2-4 as large as a non-
positional index

* Positional index size 35-50% of volume of original
text

» Caveat: all of this holds for “English-like”
languages

Tu. HMMY, Tovemotiuo Oeccaiiog

14

¢ Combination schemes

—r

* These two approaches can be profitably combined
« For particular phrases (“Michael Jackson”, “Britney

3

Spears”) it 1s inefficient to keep on merging positional
postings lists

* Even more so for phrases like “The Who”

* Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme

+ A typical web query mixture was executed in % of the
time of using just a positional index

It required 26% more space than having a positional
index alone

15
Tu. HMMY, Tovemotiuo Oeccaiiog

Q’\ Dictionary data structures for inverted

& indexes
7

* The dictionary data structure stores the term
vocabulary, document frequency, pointers to each
postings list ... in what data structure?

BRuUTUS — | 1 2 4 11 | 31|45 | 173 | 174

CAESAR — |1 2 4 5 6| 16 57 | 132

CALPURNIA | — | 2 | 31 | 54 | 101

- vy . vy
V

dictionary postings

Tu. HMMY, Tovemotiuo Oeccaiiog

A naive dictionary

* An array of struct:

term document pointer to
frequency postings list
a 656,205 —
aachen 65 —
zulu 221 —
char[20] 1nt Postings *

20 bytes 4/8 bytes 4/8 bytes
* How do we store a dictionary in memory efficiently?
* How do we quickly look up elements at query time?

Tp. HMMY, Iovemotmo Oeccoriog

17

Dictionary data structures

* oome systems use nasnes, some trees

Tu. HMMY, Iavemotmo Oscootiog 18

& Hashes

* Each vocabulary term i1s hashed to an integer
* (We assume you’ve seen hashtables before)

* Pros:
* Lookup is faster than for a tree: O(1)

* Cons:
* No easy way to find minor variants:

* judgment/judgement

* No prefix search [tolerant retrieval]

- If vocabulary keeps growing, need to occasionally
do the expensive operation of rehashing everything

Tu. HMMY, Tovemotiuo Oeccaiiog 19

Tree: binary tree

S Sude

*
T & N o
o Q X @)
N >) AN
5 $ > g
a‘g < Tu. HMMY, Havemotuio @scooliog 20

Tree: B-tree

a-hu n-z

Definition: Every internal nodel has a number of
children in the interval [a,b] where a, b are
appropriate natural numbers, e.g., [2,4].

Tu. HMMY, Tovemotiuo Oeccaiiog

21

- H.‘
A .:-'. T
i%. Tk

Trees

Simplest: binary tree
More usual: B-trees

Trees require a standard ordering of characters and
hence strings ... but we standardly have one

Pros:
* Solves the prefix problem (terms starting with Ayp)
Cons:
* Slower: O(log M) [and this requires balanced tree]
- Rebalancing binary trees is expensive

- But B-trees mitigate the rebalancing problem

22
Tu. HMMY, Tovemotiuo Oeccaiiog

