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Phrase queries
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Phrase queries
• Want to answer queries such as “stanford

university” – as a phrase
• Thus the sentence “I went to university at 

Stanford” is not a match. 
• The concept of phrase queries has proven easily 

understood by users; about 10% of web queries are 
phrase queries

• No longer suffices to store only
<term : docs> entries
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A first attempt: Biword indexes
• Index every consecutive pair of terms in the text 

as a phrase
• For example the text “Friends, Romans, 

Countrymen” would generate the biwords
• friends romans
• romans countrymen

• Each of these biwords is now a dictionary term
• Two-word phrase query-processing is now 

immediate.
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Longer phrase queries
• Longer phrases are processed as we did with wild-

cards:
• stanford university palo alto can be broken into 

the Boolean query on biwords:
stanford university AND university palo AND

palo alto

Without the docs, we cannot verify that the docs 
matching the above Boolean query do contain the 
phrase.

Can have false positives!
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Extended biwords
• Parse the indexed text and perform part-of-speech-tagging 

(POST).
• Bucket the terms into (say) Nouns (N) and 

articles/prepositions (X).
• Now deem any string of terms of the form NX*N to be an 

extended biword.
• Each such extended biword is now made a term in the 

dictionary.
• Example:  catcher in the rye

N           X   X    N
• Query processing: parse it into N’s and X’s

• Segment query into enhanced biwords
• Look up index



Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 7

Issues for biword indexes
• False positives, as noted before
• Index blowup due to bigger dictionary

• For extended biword index, parsing longer queries 
into conjunctions:
• E.g., the query tangerine trees and marmalade skies

is parsed into
• tangerine trees AND trees and marmalade AND

marmalade skies

• Not standard solution (for all biwords)
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Solution 2: Positional indexes
• Store, for each term, entries of the form:

<number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>
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Positional index example

• Can compress position values/offsets 
• Nevertheless, this expands postings storage 

substantially

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?
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Processing a phrase query
• Extract inverted index entries for each distinct 

term: to, be, or, not.
• Merge their doc:position lists to enumerate all 

positions with “to be or not to be”.
• to: 

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
• be:  

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

• Same general method for proximity searches
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Proximity queries
• LIMIT! /3 STATUTE /3 FEDERAL /2 TORT Here, 

/k means “within k words of”.
• Clearly, positional indexes can be used for such 

queries; biword indexes cannot.
• Exercise: Adapt the linear merge of postings to 

handle proximity queries.  Can you make it work 
for any value of k?
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Positional index size
• You can compress position values/offsets: we’ll talk 

bout that in lecture 5 
• Nevertheless, a positional index expands postings 

storage substantially
• Nevertheless, it is now standardly used because of 

the power and usefulness of phrase and proximity 
queries … whether used explicitly or implicitly in 
a ranking retrieval system.
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Positional index size
• Need an entry for each occurrence, not just once 

per document
• Index size depends on average document size

• Average web page has <1000 terms
• SEC filings, books, even some epic poems … easily 

100,000 terms
• Consider a term with frequency 0.1%

Why?

1001100,000

111000

Positional postingsPostingsDocument size
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Rules of thumb
• A positional index is 2–4 as large as a non-

positional index
• Positional index size 35–50% of volume of original 

text
• Caveat: all of this holds for “English-like”

languages
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Combination schemes

• These two approaches can be profitably combined
• For particular phrases (“Michael Jackson”, “Britney 

Spears”) it is inefficient to keep on merging positional 
postings lists

• Even more so for phrases like “The Who”

• Williams et al. (2004) evaluate a more 
sophisticated mixed indexing scheme
• A typical web query mixture was executed in ¼ of the 

time of using just a positional index
• It required 26% more space than having a positional 

index alone
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Dictionary data structures for inverted 
indexes

• The dictionary data structure stores the term 
vocabulary, document frequency, pointers to each 
postings list … in what data structure?

Sec. 3.1



Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας 17

A naïve dictionary

• An array of struct:

char[20]   int Postings *
20 bytes   4/8 bytes        4/8 bytes  

• How do we store a dictionary in memory efficiently?
• How do we quickly look up elements at query time?

Sec. 3.1
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Dictionary data structures

• Two main choices:
• Hash table
• Tree

• Some IR systems use hashes, some trees

Sec. 3.1
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Hashes

• Each vocabulary term is hashed to an integer
• (We assume you’ve seen hashtables before)

• Pros:
• Lookup is faster than for a tree: O(1)

• Cons:
• No easy way to find minor variants:

• judgment/judgement
• No prefix search [tolerant  retrieval]
• If vocabulary keeps growing, need to occasionally 

do the expensive operation of rehashing everything

Sec. 3.1
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Tree: binary tree

Sec. 3.1
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Tree: B-tree

• Definition: Every internal nodel has a number of 
children in the interval [a,b] where a, b are 
appropriate natural numbers, e.g., [2,4].

a-hu
hy-m

n-z

Sec. 3.1
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Trees

• Simplest: binary tree
• More usual: B-trees
• Trees require a standard ordering of characters and 

hence strings … but we standardly have one
• Pros:

• Solves the prefix problem (terms starting with hyp)
• Cons:

• Slower: O(log M)  [and this requires balanced tree]
• Rebalancing binary trees is expensive

• But B-trees mitigate the rebalancing problem

Sec. 3.1


