Evpeon & Awygipion
IIAnpo@opiag cToV
Hoykoomo Ioto

ABdoKwV —
Anuntproc Katcapoc

Avdhetn 10m: 31/03/2014

ﬁ Q‘ Problem with Boolean search:

i E‘;“ﬂ e

feast or famine

Boolean queries often result in either too few (=0) or
too many (1000s) results.

Query 1: “standard user dlink 650 — 200,000 hits
Query 2: “standard user dlink 650 no card found”: 0
hits

It takes a lot of skill to come up with a query that

produces a manageable number of hits.
« AND gives too few; OR gives too many

Tu. HMMY, Iovemotiuo Oeccaiiog

5
ﬁ - Ranked retrieval models
-

- Rather than a set of documents satisfying a query
expression, 1n ranked retrieval models, the system
returns an ordering over the (top) documents in the
collection with respect to a query

* Free text queries: Rather than a query language of
operators and expressions, the user’s query is just one
or more words 1n a human language

* In principle, there are two separate choices here, but
1n practice, ranked retrieval models have normally
been associated with free text queries and vice versa

Tu. HMMY, Iovemotiuo Oeccaiiog

Scoring as the basis of ranked retrieval

We wish to return in order the documents most likely
to be useful to the searcher

How can we rank-order the documents in the
collection with respect to a query?

Assign a score — say 1n [0, 1] — to each document

This score measures how well document and query
“match”.

Tu. HMMY, Iovemotiuo Oeccaiiog

[!'.":" 3
s]

Query-document matching scores

We need a way of assigning a score to a
query/document pair

Let’s start with a one-term query

If the query term does not occur in the document:
score should be 0

The more frequent the query term in the document,
the higher the score (should be)

We will look at a number of alternatives for this.

Tu. HMMY, Iovemotiuo Oeccaiiog

f Take 1: Jaccard coefficient

* Recall from Lecture 3: A commonly used measure of
overlap of two sets A and B

* jaccard(A,B)=|ANB|/|AT B]

* jaccard(4,A) =1

* jaccard(A,B)=01fANB=0

- A and B don’t have to be the same size.

- Always assigns a number between 0 and 1.

Tu. HMMY, Iovemotiuo Oeccaiiog

Term frequency tf

The term frequency tf, ; of term ¢ in document d 1s
defined as the number of times that ¢ occurs in d.

We want to use tf when computing query-document
match scores. But how?

Raw term frequency is not what we want:

« A document with 10 occurrences of the term 1s more relevant
than a document with 1 occurrence of the term.

 But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.

Tu. HMMY, Iovemotiuo Oeccaiiog

- H.‘
T e e
-~
'

2 £ g
= =

Log-frequency weighting
The log frequency weight of term t in d 1s

0 otherwise

0—-0,1—-1,2—1.3,10— 2, 1000 — 4, etc.

Score for a document-query pair: sum over terms ¢ in
both q and d:

score
— Ztew (1+logtf,)

The score 1s 0 if none of the query terms is present in
the document.

{1+log10tftd, if tf , >0
W g — ’ |

Tu. HMMY, Iovemotiuo Oeccaiiog

Document frequency

* Rare terms are more informative than frequent terms

* Recall stop words

* Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

* A document containing this term 1s very likely to be
relevant to the query arachnocentric

 — We want a high weight for rare terms like
arachnocentric.

Tu. HMMY, Iovemotiuo Oeccaiiog

ﬁs‘

¥ Document frequency, continued

* Frequent terms are less informative than rare terms

* Consider a query term that is frequent in the
collection (e.g., high, increase, line)

* A document containing such a term 1s more likely to
be relevant than a document that doesn’t

 But i1t’s not a sure indicator of relevance.

- — For frequent terms, we want high positive weights
for words like high, increase, and line

* But lower weights than for rare terms.
* We will use document frequency (df) to capture this.

10
Tu. HMMY, Iovemotiuo Oeccaiiog

)
¢ idf weight

= =

* df, 1s the document frequency of ¢: the number

of documents that contain ¢
- df, 1s an inverse measure of the informativeness of ¢
. df, <N
* We define the 1df (inverse document
frequency) of ¢t by
1df, =log,, (NV/df))

* We use log (N/df)) instead of N/df, to “dampen” the
effect of 1df.

Will turn out the base of the log is immaterial.

Tu. HMMY, Iovemotiuo Oeccaiiog

11

f 1df example, suppose N = 1 million

calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

1dtf, =log,, (V/df))
There is one idf value for each term tin a collection.

Tu. HMMY, Iovemotiuo Oeccaiiog

N

T S

© Effect of idf on ranking
s

* Does 1df have an effect on ranking for one-term
queries, like
* 1Phone

 1df has no effect on ranking one term queries

- 1df affects the ranking of documents for queries with at least
two terms

* For the query capricious person, 1df weighting makes
occurrences of capricious count for much more in the final
document ranking than occurrences of person.

Tu. HMMY, Iovemotiuo Oeccaiiog

13

& Collection vs. Document frequency

—r

* The collection frequency of ¢ is the number
of occurrences of ¢ 1n the collection,
counting multiple occurrences.

- Example:
Insurance 10440 3997
try 10422 8760

* Which word 1s a better search term (and
should get a higher weight)?

14
Tu. HMMY, Iovemotiuo Oeccaiiog

3
E tf-1df weighting

The tf-1df weight of a term is the product of its tf weight
and 1ts 1df weight.

w =(l+logtf, ;) xlog,,(N/df,)

Best known weighting scheme 1n information retrieval

* Note: the “-” in tf-1df 1s a hyphen, not a minus sign!
« Alternative names: tf.adf, tf x 1df

Increases with the number of occurrences within a
document

Increases with the rarity of the term in the collection

Tu. HMMY, Iovemotiuo Oeccaiiog 15

Final ranking of documents for a query

16 16
Tu. HMMY, Iavemomo Oscootiog

g =% 1

. Binary — count — weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights (1 RV

Tu. HMMY, Iovemotiuo Oeccaiiog 17

. ll'.||r.

Documents as vectors

So we have a | V| -dimensional vector space
Terms are axes of the space
Documents are points or vectors in this space

Very high-dimensional: tens of millions of dimensions
when you apply this to a web search engine

These are very sparse vectors - most entries are zero.

Tu. HMMY, Iovemotiuo Oeccaiiog

18

-

ﬁ:‘

~ Queries as vectors

« Keyidea 1: Do the same for queries: represent them
as vectors 1n the space

- Keyidea 2: Rank documents according to their
proximity to the query in this space

« proximity = similarity of vectors
* proximity ~ inverse of distance

* Recall: We do this because we want to get away from
the you're-either-in-or-out Boolean model.

* Instead: rank more relevant documents higher than
less relevant documents

Tu. HMMY, Iovemotiuo Oeccaiiog

19

f Formalizing vector space proximity

First cut: distance between two points

* (= distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance 1s a bad 1dea . . .

. . . because Euclidean distance 1s large for vectors of
different lengths.

Tu. HMMY, Iovemotiuo Oeccaiiog

20

| Why distance 1s a bad 1dea

The Euclidean
distance between g GOSSIP o

and d, is large even d,

though the K

distribution of terms
in the query g and the
distribution of

terms in the
document d, are

very similar.

—

d3
- JEALOUS

21
Tu. HMMY, Iovemotiuo Oeccaiiog

Use angle instead of distance

Thought experiment: take a document d and append 1t
to 1itself. Call this document d'.

“Semantically” d and d’ have the same content

The Euclidean distance between the two documents
can be quite large

The angle between the two documents 1s 0O,
corresponding to maximal similarity.

Key 1dea: Rank documents according to angle with
query.

Tu. HMMY, Iovemotiuo Oeccaiiog

22

& From angles to cosines
=

* The following two notions are equivalent.

« Rank documents in decreasing order of the angle between
query and document

« Rank documents in increasing order of
cosine(query,document)

* Cosine 1s a monotonically decreasing function for the
interval [0°, 180°]

Tu. HMMY, Iovemotiuo Oeccaiiog

23

From angles to cosines

s A1F] 150 200 250 JQ 350

-1t

* But how — and why — should we be computing cosines?

Tu. HMMY, Iavemomo Oscootiog 24

ﬁ? Length normalization

« A vector can be (length-) normalized by dividing each
of its components by its length — for this we use the L,

norm:
—I 2
%], = 2.~

* Dividing a vector by its L, norm makes it a unit

(length) vector (on surface of unit hypersphere)

- Effect on the two documents d and d’ (d appended to

1tself) from earlier slide: they have i1dentical vectors
after length-normalization.

* Long and short documents now have comparable weights

Tu. HMMY, Iovemotiuo Oeccaiiog

25

ﬁ cosine(query,document)
=

Dot product Unit vectors ‘
o\ ged g 07 d,

lga| \q\ \/2” q \/ZV‘ &

q; is the tf-idf weight of term i in the query
d. is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of g and d..
equivalently, the cosine of the angle between fand d.

26
Tu. HMMY, Iovemotiuo Oeccaiiog

N
& Cosine for length-normalized vectors

- For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

COS(?: c_l;) — q _ C_Z; — Zzlqidi

for q, d length-normalized.

Tu. HMMY, Iovemotiuo Oeccaiiog

27

/(q)
\ \7(d2‘
/ #
ya
\
\
\
\
\
"'7\1 ?(d3)

> RICH

1

Tp. HMMY, Iovemotmo Oeccoriog

How similar are
the novels

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

y
~Cosine similarity amongst 3 documents

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

Tp. HMMY, Iovemotmo Oeccoriog

3 documents example contd.

Log frequency weighting After length normalization
affection 3.06 2.76 2.30 affection 0.789 0.832 0.524
jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) =

0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0 + 0.0 x 0.0
= (.94

cos(SaS,WH) = 0.79

cos(PaP,WH) = 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)? 50

Tu. HMMY, Iovemotiuo Occcaiiog

5

L b

. Computing cosine scores

COSINESCORE(q)
1 float Scores[N] =0
2 float Length|N]
3 for each query term t
4 do calculate wt ¢ and fetch postings list for t
5 for each pair(d,tf;) in postings list
6 do Scores|d]+ = w¢.g X Wy g
/ Read the array Length
8 for each d
9 do Scores[d] = Scores|d]/Length[d]
10

return Top K components of Scores|]

31

g =% 1

 tf-idf weighting has many variants

Term frequency

Document frequency

Normalization

n (natural) tf; o n (no) 1 n (none))
| (logarithm) 1 + log(tf:.q) t (idf) log % c (cosine) .
¢ VW W Wy
0.5x1Te,q : N —df; : /
a (augmented) 0.5+ () | P (prob idf) max{0,log =5~} | u (E::ﬁi,‘fi} 1/u
1 iftt;g >0 - / a
b (boolean) {ﬂ otherwise b (byte size) {1.]: Ehfriength :

1+log(tfs 4)

L (log ave) 1Hlog(averzq(tiz.a))

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Tu. HMMY, Iovemotiuo Oeccaiiog

32

| hﬁ“ Weighting may differ in queries vs

%
1-..- |
i]
% o
L gh

documents

Many search engines allow for different weightings for
queriles vs. documents

SMART Notation: denotes the combination 1n use 1n
an engine, with the notation ddd.qqq, using the
acronyms from the previous table

A very standard weighting scheme is: Inc.ltc

Document: logarithmic tf (I as first character), no 1df
and cosine normalization

Query: logarithmic tf (1 in leftmost column), 1df (t in
second column), no normalization ...

Tu. HMMY, Iovemotiuo Oeccaiiog 33

)
ﬁ tf-1df example: Inc.ltc
=

Document: car insurance auto insurance
Query: best car insurance

tf- tf-wt df idf wt nllize tf-raw tf-wt wit n’lize
raw
auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 20 20 0.52 1 1 1 052 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Exercise: what is N, the number of docs?

Doc length =1> 102 +12+1.3% ~1.92
Score = 0+0+0.27+0.53 =0.8

Tu. HMMY, Iovemotiuo Oeccaiiog 34

E Summary — vector space ranking

* Represent the query as a weighted tf-1df vector
* Represent each document as a weighted tf-1df vector

* Compute the cosine similarity score for the query
vector and each document vector

- Rank documents with respect to the query by score
* Return the top K (e.g., K= 10) to the user

Tu. HMMY, Iovemotiuo Oeccaiiog 35

5

Computing cosine scores

COSINESCORE(q)
1 float Scores[N] =0
2 float Length|N]
3 for each query term t
4 do calculate wt ¢ and fetch postings list for t
5 for each pair(d,tf;) in postings list
6 do Scores|d]+ = w¢.g X Wy g
/ Read the array Length
8 for each d
9 do Scores[d] = Scores|d]/Length[d]
10

return Top K components of Scores|]

36

N
& KEfficient cosine ranking

* Find the K docs in the collection “nearest” to the
query = K largest query-doc cosines.

- Efficient ranking:
- Computing a single cosine efficiently.

* Choosing the K largest cosine values efficiently.
* Can we do this without computing all NV cosines?

Tu. HMMY, Iovemotiuo Oeccaiiog

37

f Efficient cosine ranking

* What we’re doing in effect: solving the K-nearest
neighbor problem for a query vector

* In general, we do not know how to do this efficiently
for high-dimensional spaces

- But it 1s solvable for short queries, and standard
Indexes support this well

Tu. HMMY, Iovemotiuo Oeccaiiog

38

f Speclal case — unweighted queries

* No weighting on query terms
- Assume each query term occurs only once

* Then for ranking, don’t need to normalize query vector
« Slight simplification of algorithm from Lecture 6

Tu. HMMY, Iovemotiuo Oeccaiiog

39

e,
o =y R
)
" v o

3 Faster cosine: unweighted query

FASTCOSINESCORE((])

1

O 00 =1 O Ul W= W

[
=

11

float Scores[N] =10

for each d

do Initialize Length[d] to the length of doc d

for each query term t

do calculate w; ; and fetch postings list for ¢
for each pair(d, tf; ;) in postings list
do add wt; ; to Scores|d]

Read the array Length[d]

for each d

do Divide Scores[d] by Length|d]

return Top K components of Scores||

Figure 7.1 A ftaster algorithm for vector space scores.

Tp. HMMY, Iovemotmo Oeccoriog 40

S0)
ﬁ? Bottlenecks
=
- Primary computational bottleneck in scoring: cosine
computation
* Can we avoid all this computation?

* Yes, but may sometimes get 1t wrong

* a doc not 1n the top K may creep into the list of K
output docs

* Is this such a bad thing?

Tu. HMMY, Iovemotiuo Oeccaiiog

41

Cosine similarity is only a proxy

User has a task and a query formulation
Cosine matches docs to query
Thus cosine 1s anyway a proxy for user happiness

If we get a list of K docs “close” to the top K by cosine
measure, should be ok

Tu. HMMY, Iovemotiuo Oeccaiiog

42

a A |
s]

Generic approach

Find a set A of contenders, with K < |A| << N

+ A does not necessarily contain the top K, but has many
docs from among the top K

* Return the top K docsin A
Think of A as pruning non-contenders

The same approach 1s also used for other (non-cosine)
scoring functions

Will look at several schemes following this approach

43
Tu. HMMY, Iovemotiuo Oeccaiiog

)

¥ Index elimination
7

- Basic algorithm FastCosineScore of Fig 7.1 only
considers docs containing at least one query term

* Take this further:

* Only consider high-idf query terms
* Only consider docs containing many query terms

Tu. HMMY, Iovemotiuo Oeccaiiog

44

a A |
s]

High-1df query terms only

For a query such as catcher in the rye
Only accumulate scores from catcher and rye

Intuition: in and the contribute little to the scores and
so don’t alter rank-ordering much

Benefit:

* Postings of low-1df terms have many docs — these (many)
docs get eliminated from set A of contenders

Tu. HMMY, Iovemotiuo Oeccaiiog

45

f Docs containing many query terms

- Any doc with at least one query term is a candidate
for the top K output list

* For multi-term queries, only compute scores for docs
containing several of the query terms

* Say, at least 3 out of 4

« Imposes a “soft conjunction” on queries seen on web search
engines (early Google)

- Easy to implement in postings traversal

Tu. HMMY, Iovemotiuo Oeccaiiog

46

& 3of4 query terms
L =

Antony| "T——>
Brutus| '"——>
Caesar| "——>
Calpurnia?———=

Scores only computed for docs 8, 16 and 32.

314 | 8]116] 32| 64]128
214 | 8116] 32| 64[128

1 518 | 13] 21 34
13116132

Tu. HMMY, Iovemotiuo Oeccaiiog

47

ﬁ Champion lists
=
* Precompute for each dictionary term ¢, the r docs of
highest weight in ¢’s postings

+ (Call this the champion list for ¢
 (aka fancy list or top docs for ?)

* Note that r has to be chosen at index build time
* Thus, it’s possible that r < K

« At query time, only compute scores for docs in the
champion list of some query term
* Pick the K top-scoring docs from amongst these

Tu. HMMY, Iovemotiuo Oeccaiiog

48

Static quality scores

We want top-ranking documents to be both
and authoritative

Relevance 1s being modeled by cosine scores

relevant

Authority 1s typically a query-independent property of

a document

Examples of authority signals
* Wikipedia among websites
+ Articles in certain newspapers
* A paper with many citations

* Many diggs, Y'buzzes or del.icio.usé{narks

o
—
e
== =5
z =

—

—

Quantitative

=z
=z
7

« (Pagerank)

//////
MMMMM
MMMMM
MMMMM
wwwww
wwwwww
MMMMM
—
—
MMMMM
MMMMM
//////

Tu. HMMY, Iovemotiuo Oeccaiiog

49

A
- Modeling authority

« Assign to each document a query-independent quality
score 1n [0,1] to each document d
* Denote this by g(d)

* Thus, a quantity like the number of citations is scaled
into [0,1]

- Exercise: suggest a formula for this.

Tu. HMMY, Iovemotiuo Oeccaiiog

50

Net score

* Consider a simple total score combining cosine
relevance and authority
* net-score(q,d) = g(d) + cosine(q,d)
« Can use some other linear combination than an equal
welghting
* Indeed, any function of the two “signals” of user happiness —
more later

* Now we seek the top K docs by net score

Tu. HMMY, Iovemotiuo Oeccaiiog

51

' Top K by net score — fast methods

* First idea: Order all postings by g(d)
* Key: this i1s a common ordering for all postings

* Thus, can concurrently traverse query terms’ postings
for
* Postings intersection
* Cosine score computation

- Exercise: write pseudocode for cosine score
computation if postings are ordered by g(d)

Tu. HMMY, Iovemotiuo Oeccaiiog 52

. Why order postings by g(d)?

* Under g(d)-ordering, top-scoring docs likely to appear
early 1n postings traversal

* In time-bound applications (say, we have to return
whatever search results we can 1n 50 ms), this allows
us to stop postings traversal early

* Short of computing scores for all docs in postings

Tu. HMMY, Iovemotiuo Oeccaiiog 53

a A |
s]

Champion lists in g(d)-ordering

Can combine champion lists with g(d)-ordering
Maintain for each term a champion list of the r docs
with highest g(d) + tf-1df,

Seek top-K results from only the docs in these
champion lists

Tu. HMMY, Iovemotiuo Oeccaiiog o4

E High and low lists

* For each term, we maintain two postings lists called
high and low
* Think of high as the champion list
* When traversing postings on a query, only traverse
high lists first
« If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

* Can be used even for simple cosine scores, without
global quality g(d)

A means for segmenting index into two tiers

55
Tu. HMMY, Iovemotiuo Oeccaiiog

E’ Impact-ordered postings

* We only want to compute scores for docs for which
wf, 4 1s high enough

* We sort each postings list by wyf, 4
« Now: not all postings 1n a common order!

* How do we compute scores in order to pick off top K?
* Two 1deas follow

Tu. HMMY, Iovemotiuo Oeccaiiog

5
f 1. Early termination

* When traversing t¢’s postings, stop early after either
» a fixed number of r docs
* wf,; drops below some threshold

» Take the union of the resulting sets of docs
* One from the postings of each query term

« Compute only the scores for docs in this union

Tu. HMMY, Iovemotiuo Oeccaiiog

57

~ 2.1df-ordered terms

* When considering the postings of query terms

Look at them 1n order of decreasing 1df
- High 1df terms likely to contribute most to score

As we update score contribution from each query term
« Stop if doc scores relatively unchanged

Can apply to cosine or some other net scores

Tu. HMMY, Iovemotiuo Oeccaiiog

E Parametric and zone indexes

* Thus far, a doc has been a sequence of terms

* In fact documents have multiple parts, some with
speclal semantics:
- Author
- Title
* Date of publication
- Language
- Format
* etc.

 These constitute the metadata about a document

Tu. HMMY, Iovemotiuo Oeccaiiog

59

f Fields

We sometimes wish to search by these metadata

« E.g., find docs authored by William Shakespeare in the year
1601, containing alas poor Yorick

Year = 1601 1s an example of a field

Also, author last name = shakespeare, etc

Field or parametric index: postings for each field value
- Sometimes build range trees (e.g., for dates)

Field query typically treated as conjunction
* (doc must be authored by shakespeare)

Tu. HMMY, Iovemotiuo Oeccaiiog

60

E Zone

* A zone 1s a region of the doc that can contain an
arbitrary amount of text e.g.,
« Title
« Abstract
* References ...

* Build inverted indexes on zones as well to permit
querying

« E.g., “find docs with merchant in the title zone and
matching the query gentle rain”

Tu. HMMY, Iovemotiuo Oeccaiiog

61

Example zone indexes

william.abstract 11 121 1441 1729
william title — 2 — 4 —~ 8 —> 16
william.author |— 2 — 3 —* 5 — 8

Encode zones in dictionary vs. postings.

i)

william

» 2.author,2.title

~+ 3.author

4 title

Tu. HMMY, Iovemotiuo Oeccaiiog

~H 5.author

62

[!'.":" 3
s]

Tiered indexes

Break postings up into a hierarchy of lists

* Most important

* Least important
Can be done by g(d) or another measure
Inverted index thus broken up into tiers of decreasing
1mportance
At query time use top tier unless it fails to yield K

docs
 If so drop to lower tiers

Tu. HMMY, Iovemotiuo Oeccaiiog

63

Example tiered index

auto

best

car

Y

Doc2 Doc3

A 4

insurance

auto

h 4
A 4

best Doc1 Doc3

Tier 2

car

insurance

Y

Doc1

auto

Tier 3 best

Y

Doc?2

car

insurance 64

I Parsing [userquery |
| | Llngmstlcs ﬂ Results
Documents J @ Free text query parser g:l‘> page
Indexers Spell correction| | Scoring and ranking |

Dc:t:u ment
cache

Putting 1t all together

Metadata in | Inexact . .
Tiered inverted
zone and top K ositional index k-gram
field indexes | retrieval P
Inclexes

Tp. HMMY, Iovemotmo Oeccoriog

U

Scoring
parameters

4

MLR

r-aining
set

o

s,

65

