
1

Εύρεση & Διαχείριση
Πληροφορίας στον
Παγκόσµιο Ιστό

Διδάσκων –
Δημήτριος Κατσαρός

Διάλεξη 10η: 31/03/2014

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 2

Problem with Boolean search:
feast or famine

• Boolean queries often result in either too few (=0) or
too many (1000s) results.

• Query 1: “standard user dlink 650” → 200,000 hits
• Query 2: “standard user dlink 650 no card found”: 0

hits
• It takes a lot of skill to come up with a query that

produces a manageable number of hits.
• AND gives too few; OR gives too many

Ch. 6

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 3

Ranked retrieval models

• Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system
returns an ordering over the (top) documents in the
collection with respect to a query

• Free text queries: Rather than a query language of
operators and expressions, the user’s query is just one
or more words in a human language

• In principle, there are two separate choices here, but
in practice, ranked retrieval models have normally
been associated with free text queries and vice versa

3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 4

Scoring as the basis of ranked retrieval

• We wish to return in order the documents most likely
to be useful to the searcher

• How can we rank-order the documents in the
collection with respect to a query?

• Assign a score – say in [0, 1] – to each document
• This score measures how well document and query

“match”.

Ch. 6

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 5

Query-document matching scores

• We need a way of assigning a score to a
query/document pair

• Let’s start with a one-term query
• If the query term does not occur in the document:

score should be 0
• The more frequent the query term in the document,

the higher the score (should be)
• We will look at a number of alternatives for this.

Ch. 6

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 6

Take 1: Jaccard coefficient

• Recall from Lecture 3: A commonly used measure of
overlap of two sets A and B

• jaccard(A,B) = |A ∩ B| / |A � B|
• jaccard(A,A) = 1
• jaccard(A,B) = 0 if A ∩ B = 0
• A and B don’t have to be the same size.
• Always assigns a number between 0 and 1.

Ch. 6

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 7

Term frequency tf

• The term frequency tft,d of term t in document d is
defined as the number of times that t occurs in d.

• We want to use tf when computing query-document
match scores. But how?

• Raw term frequency is not what we want:
• A document with 10 occurrences of the term is more relevant

than a document with 1 occurrence of the term.
• But not 10 times more relevant.

• Relevance does not increase proportionally with term
frequency.

NB: frequency = count in IRNB: frequency = count in IR

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 8

Log-frequency weighting

• The log frequency weight of term t in d is

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
• Score for a document-query pair: sum over terms t in

both q and d:
• score

• The score is 0 if none of the query terms is present in
the document.

⎩
⎨
⎧ >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

∑ ∩∈
+=

dqt dt) tflog (1 ,

Sec. 6.2

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 9

Document frequency

• Rare terms are more informative than frequent terms
• Recall stop words

• Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

• A document containing this term is very likely to be
relevant to the query arachnocentric

• → We want a high weight for rare terms like
arachnocentric.

Sec. 6.2.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 10

Document frequency, continued

• Frequent terms are less informative than rare terms
• Consider a query term that is frequent in the

collection (e.g., high, increase, line)
• A document containing such a term is more likely to

be relevant than a document that doesn’t
• But it’s not a sure indicator of relevance.
• → For frequent terms, we want high positive weights

for words like high, increase, and line
• But lower weights than for rare terms.
• We will use document frequency (df) to capture this.

Sec. 6.2.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 11

idf weight

• dft is the document frequency of t: the number
of documents that contain t
• dft is an inverse measure of the informativeness of t
• dft ≤ N

• We define the idf (inverse document
frequency) of t by

• We use log (N/dft) instead of N/dft to “dampen” the
effect of idf.

)/df(log idf 10 tt N=

Will turn out the base of the log is immaterial.

Sec. 6.2.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 12

idf example, suppose N = 1 million

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N=

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 13

Effect of idf on ranking

• Does idf have an effect on ranking for one-term
queries, like
• iPhone

• idf has no effect on ranking one term queries
• idf affects the ranking of documents for queries with at least

two terms
• For the query capricious person, idf weighting makes

occurrences of capricious count for much more in the final
document ranking than occurrences of person.

13

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 14

Collection vs. Document frequency

• The collection frequency of t is the number
of occurrences of t in the collection,
counting multiple occurrences.

• Example:

• Which word is a better search term (and
should get a higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 15

tf-idf weighting

• The tf-idf weight of a term is the product of its tf weight
and its idf weight.

• Best known weighting scheme in information retrieval
• Note: the “-” in tf-idf is a hyphen, not a minus sign!
• Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a
document

• Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,, tdt N
dt

×+=

Sec. 6.2.2

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 16

Final ranking of documents for a query

16

Score(q,d) = tf.idft,dt∈q∩d∑

Sec. 6.2.2

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 17

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights � R|V|

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 18

Documents as vectors

• So we have a |V|-dimensional vector space
• Terms are axes of the space
• Documents are points or vectors in this space
• Very high-dimensional: tens of millions of dimensions

when you apply this to a web search engine
• These are very sparse vectors - most entries are zero.

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 19

Queries as vectors

• Key idea 1: Do the same for queries: represent them
as vectors in the space

• Key idea 2: Rank documents according to their
proximity to the query in this space

• proximity = similarity of vectors
• proximity ≈ inverse of distance
• Recall: We do this because we want to get away from

the you’re-either-in-or-out Boolean model.
• Instead: rank more relevant documents higher than

less relevant documents

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 20

Formalizing vector space proximity

• First cut: distance between two points
• (= distance between the end points of the two vectors)

• Euclidean distance?
• Euclidean distance is a bad idea . . .
• . . . because Euclidean distance is large for vectors of

different lengths.

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 21

Why distance is a bad idea
The Euclidean
distance between q
and d2 is large even
though the
distribution of terms
in the query q and the
distribution of
terms in the
document d2 are
very similar.

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 22

Use angle instead of distance

• Thought experiment: take a document d and append it
to itself. Call this document d′.

• “Semantically” d and d′ have the same content
• The Euclidean distance between the two documents

can be quite large
• The angle between the two documents is 0,

corresponding to maximal similarity.

• Key idea: Rank documents according to angle with
query.

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 23

From angles to cosines

• The following two notions are equivalent.
• Rank documents in decreasing order of the angle between

query and document
• Rank documents in increasing order of

cosine(query,document)
• Cosine is a monotonically decreasing function for the

interval [0o, 180o]

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 24

From angles to cosines

• But how – and why – should we be computing cosines?

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 25

Length normalization

• A vector can be (length-) normalized by dividing each
of its components by its length – for this we use the L2
norm:

• Dividing a vector by its L2 norm makes it a unit
(length) vector (on surface of unit hypersphere)

• Effect on the two documents d and d′ (d appended to
itself) from earlier slide: they have identical vectors
after length-normalization.
• Long and short documents now have comparable weights

∑=
i ixx 2

2

r

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 26

cosine(query,document)

∑∑
∑

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(r

r

r

r

rr

rrrr

Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 27

Cosine for length-normalized vectors

• For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

for q, d length-normalized.

27

cos(r q ,

r
d) = r q •

r
d = qidii=1

V∑

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 28

Cosine similarity illustrated

28

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 29

Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 30

3 documents example contd.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 31

Computing cosine scores

Sec. 6.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 32

tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Sec. 6.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 33

Weighting may differ in queries vs
documents

• Many search engines allow for different weightings for
queries vs. documents

• SMART Notation: denotes the combination in use in
an engine, with the notation ddd.qqq, using the
acronyms from the previous table

• A very standard weighting scheme is: lnc.ltc
• Document: logarithmic tf (l as first character), no idf

and cosine normalization

• Query: logarithmic tf (l in leftmost column), idf (t in
second column), no normalization …

Sec. 6.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 34

tf-idf example: lnc.ltc

Term Query Document Prod

tf-
raw

tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length = 12 + 02 +12 +1.32 ≈1.92

Sec. 6.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 35

Summary – vector space ranking

• Represent the query as a weighted tf-idf vector
• Represent each document as a weighted tf-idf vector
• Compute the cosine similarity score for the query

vector and each document vector
• Rank documents with respect to the query by score
• Return the top K (e.g., K = 10) to the user

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 36

Computing cosine scores
Sec. 6.3.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 37

Efficient cosine ranking

• Find the K docs in the collection “nearest” to the
query ⇒ K largest query-doc cosines.

• Efficient ranking:
• Computing a single cosine efficiently.
• Choosing the K largest cosine values efficiently.

• Can we do this without computing all N cosines?

Sec. 7.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 38

Efficient cosine ranking

• What we’re doing in effect: solving the K-nearest
neighbor problem for a query vector

• In general, we do not know how to do this efficiently
for high-dimensional spaces

• But it is solvable for short queries, and standard
indexes support this well

Sec. 7.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 39

Special case – unweighted queries

• No weighting on query terms
• Assume each query term occurs only once

• Then for ranking, don’t need to normalize query vector
• Slight simplification of algorithm from Lecture 6

Sec. 7.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 40

Faster cosine: unweighted query

Sec. 7.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 41

Bottlenecks

• Primary computational bottleneck in scoring: cosine
computation

• Can we avoid all this computation?
• Yes, but may sometimes get it wrong

• a doc not in the top K may creep into the list of K
output docs

• Is this such a bad thing?

Sec. 7.1.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 42

Cosine similarity is only a proxy

• User has a task and a query formulation
• Cosine matches docs to query
• Thus cosine is anyway a proxy for user happiness
• If we get a list of K docs “close” to the top K by cosine

measure, should be ok

Sec. 7.1.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 43

Generic approach

• Find a set A of contenders, with K < |A| << N
• A does not necessarily contain the top K, but has many

docs from among the top K
• Return the top K docs in A

• Think of A as pruning non-contenders
• The same approach is also used for other (non-cosine)

scoring functions
• Will look at several schemes following this approach

Sec. 7.1.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 44

Index elimination

• Basic algorithm FastCosineScore of Fig 7.1 only
considers docs containing at least one query term

• Take this further:
• Only consider high-idf query terms
• Only consider docs containing many query terms

Sec. 7.1.2

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 45

High-idf query terms only

• For a query such as catcher in the rye
• Only accumulate scores from catcher and rye
• Intuition: in and the contribute little to the scores and

so don’t alter rank-ordering much
• Benefit:

• Postings of low-idf terms have many docs → these (many)
docs get eliminated from set A of contenders

Sec. 7.1.2

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 46

Docs containing many query terms

• Any doc with at least one query term is a candidate
for the top K output list

• For multi-term queries, only compute scores for docs
containing several of the query terms
• Say, at least 3 out of 4
• Imposes a “soft conjunction” on queries seen on web search

engines (early Google)
• Easy to implement in postings traversal

Sec. 7.1.2

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 47

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 48

Champion lists

• Precompute for each dictionary term t, the r docs of
highest weight in t’s postings
• Call this the champion list for t
• (aka fancy list or top docs for t)

• Note that r has to be chosen at index build time
• Thus, it’s possible that r < K

• At query time, only compute scores for docs in the
champion list of some query term
• Pick the K top-scoring docs from amongst these

Sec. 7.1.3

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 49

QuantitativeQuantitative

Static quality scores

• We want top-ranking documents to be both relevant
and authoritative

• Relevance is being modeled by cosine scores
• Authority is typically a query-independent property of

a document
• Examples of authority signals

• Wikipedia among websites
• Articles in certain newspapers
• A paper with many citations
• Many diggs, Y!buzzes or del.icio.us marks
• (Pagerank)

Sec. 7.1.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 50

Modeling authority

• Assign to each document a query-independent quality
score in [0,1] to each document d
• Denote this by g(d)

• Thus, a quantity like the number of citations is scaled
into [0,1]
• Exercise: suggest a formula for this.

Sec. 7.1.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 51

Net score

• Consider a simple total score combining cosine
relevance and authority

• net-score(q,d) = g(d) + cosine(q,d)
• Can use some other linear combination than an equal

weighting
• Indeed, any function of the two “signals” of user happiness –

more later
• Now we seek the top K docs by net score

Sec. 7.1.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 52

Top K by net score – fast methods

• First idea: Order all postings by g(d)
• Key: this is a common ordering for all postings
• Thus, can concurrently traverse query terms’ postings

for
• Postings intersection
• Cosine score computation

• Exercise: write pseudocode for cosine score
computation if postings are ordered by g(d)

Sec. 7.1.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 53

Why order postings by g(d)?

• Under g(d)-ordering, top-scoring docs likely to appear
early in postings traversal

• In time-bound applications (say, we have to return
whatever search results we can in 50 ms), this allows
us to stop postings traversal early
• Short of computing scores for all docs in postings

Sec. 7.1.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 54

Champion lists in g(d)-ordering

• Can combine champion lists with g(d)-ordering
• Maintain for each term a champion list of the r docs

with highest g(d) + tf-idftd

• Seek top-K results from only the docs in these
champion lists

Sec. 7.1.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 55

High and low lists

• For each term, we maintain two postings lists called
high and low
• Think of high as the champion list

• When traversing postings on a query, only traverse
high lists first
• If we get more than K docs, select the top K and stop
• Else proceed to get docs from the low lists

• Can be used even for simple cosine scores, without
global quality g(d)

• A means for segmenting index into two tiers

Sec. 7.1.4

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 56

Impact-ordered postings

• We only want to compute scores for docs for which
wft,d is high enough

• We sort each postings list by wft,d

• Now: not all postings in a common order!
• How do we compute scores in order to pick off top K?

• Two ideas follow

Sec. 7.1.5

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 57

1. Early termination

• When traversing t’s postings, stop early after either
• a fixed number of r docs
• wft,d drops below some threshold

• Take the union of the resulting sets of docs
• One from the postings of each query term

• Compute only the scores for docs in this union

Sec. 7.1.5

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 58

2. idf-ordered terms

• When considering the postings of query terms
• Look at them in order of decreasing idf

• High idf terms likely to contribute most to score
• As we update score contribution from each query term

• Stop if doc scores relatively unchanged
• Can apply to cosine or some other net scores

Sec. 7.1.5

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 59

Parametric and zone indexes

• Thus far, a doc has been a sequence of terms
• In fact documents have multiple parts, some with

special semantics:
• Author
• Title
• Date of publication
• Language
• Format
• etc.

• These constitute the metadata about a document

Sec. 6.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 60

Fields

• We sometimes wish to search by these metadata
• E.g., find docs authored by William Shakespeare in the year

1601, containing alas poor Yorick
• Year = 1601 is an example of a field
• Also, author last name = shakespeare, etc
• Field or parametric index: postings for each field value

• Sometimes build range trees (e.g., for dates)
• Field query typically treated as conjunction

• (doc must be authored by shakespeare)

Sec. 6.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 61

Zone

• A zone is a region of the doc that can contain an
arbitrary amount of text e.g.,
• Title
• Abstract
• References …

• Build inverted indexes on zones as well to permit
querying

• E.g., “find docs with merchant in the title zone and
matching the query gentle rain”

Sec. 6.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 62

Example zone indexes

Encode zones in dictionary vs. postings.

Sec. 6.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 63

Tiered indexes

• Break postings up into a hierarchy of lists
• Most important
• …
• Least important

• Can be done by g(d) or another measure
• Inverted index thus broken up into tiers of decreasing

importance
• At query time use top tier unless it fails to yield K

docs
• If so drop to lower tiers

Sec. 7.2.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 64

Example tiered index

Sec. 7.2.1

Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 65

Putting it all together

Sec. 7.2.4

