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Problem with Boolean search:
feast or famine

• Boolean queries often result in either too few (=0) or 
too many (1000s) results.

• Query 1: “standard user dlink 650” → 200,000 hits
• Query 2: “standard user dlink 650 no card found”: 0 

hits
• It takes a lot of skill to come up with a query that 

produces a manageable number of hits.
• AND gives too few; OR gives too many

Ch. 6
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Ranked retrieval models

• Rather than a set of documents satisfying a query 
expression, in ranked retrieval models, the system 
returns an ordering over the (top) documents in the 
collection with respect to a query

• Free text queries: Rather than a query language of 
operators and expressions, the user’s query is just one 
or more words in a human language

• In principle, there are two separate choices here, but 
in practice, ranked retrieval models have normally 
been associated with free text queries and vice versa

3
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Scoring as the basis of ranked retrieval

• We wish to return in order the documents most likely 
to be useful to the searcher

• How can we rank-order the documents in the 
collection with respect to a query?

• Assign a score – say in [0, 1] – to each document
• This score measures how well document and query 

“match”.

Ch. 6
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Query-document matching scores

• We need a way of assigning a score to a 
query/document pair

• Let’s start with a one-term query
• If the query term does not occur in the document: 

score should be 0
• The more frequent the query term in the document, 

the higher the score (should be)
• We will look at a number of alternatives for this.

Ch. 6
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Take 1: Jaccard coefficient

• Recall from Lecture 3: A commonly used measure of 
overlap of two sets A and B

• jaccard(A,B) = |A ∩ B| / |A � B|
• jaccard(A,A) = 1
• jaccard(A,B) = 0 if A ∩ B = 0
• A and B don’t have to be the same size.
• Always assigns a number between 0 and 1.

Ch. 6
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Term frequency tf

• The term frequency tft,d of term t in document d is 
defined as the number of times that t occurs in d.

• We want to use tf when computing query-document 
match scores. But how?

• Raw term frequency is not what we want:
• A document with 10 occurrences of the term is more relevant 

than a document with 1 occurrence of the term.
• But not 10 times more relevant.

• Relevance does not increase proportionally with term 
frequency.

NB: frequency = count in IRNB: frequency = count in IR
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Log-frequency weighting

• The log frequency weight of term t in d is

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
• Score for a document-query pair: sum over terms t in 

both q and d:
• score

• The score is 0 if none of the query terms is present in 
the document.
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Sec. 6.2
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Document frequency

• Rare terms are more informative than frequent terms
• Recall stop words

• Consider a term in the query that is rare in the 
collection (e.g., arachnocentric)

• A document containing this term is very likely to be 
relevant to the query arachnocentric

• → We want a high weight for rare terms like 
arachnocentric.

Sec. 6.2.1
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Document frequency, continued

• Frequent terms are less informative than rare terms
• Consider a query term that is frequent in the 

collection (e.g., high, increase, line)
• A document containing such a term is more likely to 

be relevant than a document that doesn’t
• But it’s not a sure indicator of relevance.
• → For frequent terms, we want high positive weights 

for words like high, increase, and line
• But lower weights than for rare terms.
• We will use document frequency (df) to capture this.

Sec. 6.2.1
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idf weight

• dft is the document frequency of t: the number 
of documents that contain t
• dft is an inverse measure of the informativeness of t
• dft ≤ N

• We define the idf (inverse document 
frequency) of t by

• We use log (N/dft) instead of N/dft to “dampen” the 
effect of idf.

)/df( log  idf 10 tt N=

Will turn out the base of the log is immaterial.

Sec. 6.2.1
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idf example, suppose N = 1 million

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df( log  idf 10 tt N=
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Effect of idf on ranking

• Does idf have an effect on ranking for one-term 
queries, like
• iPhone

• idf has no effect on ranking one term queries
• idf affects the ranking of documents for queries with at least 

two terms
• For the query capricious person, idf weighting makes 

occurrences of capricious count for much more in the final 
document ranking than occurrences of person.

13
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Collection vs. Document frequency

• The collection frequency of t is the number 
of occurrences of t in the collection, 
counting multiple occurrences.

• Example:

• Which word is a better search term (and 
should get a higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1
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tf-idf weighting

• The tf-idf weight of a term is the product of its tf weight 
and its idf weight.

• Best known weighting scheme in information retrieval
• Note: the “-” in tf-idf is a hyphen, not a minus sign!
• Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a 
document

• Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,, tdt N
dt

×+=

Sec. 6.2.2
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Final ranking of documents for a query

16

Score(q,d) = tf.idft,dt∈q∩d∑

Sec. 6.2.2
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Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 
vector of tf-idf weights � R|V|

Sec. 6.3
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Documents as vectors

• So we have a |V|-dimensional vector space
• Terms are axes of the space
• Documents are points or vectors in this space
• Very high-dimensional: tens of millions of dimensions 

when you apply this to a web search engine
• These are very sparse vectors - most entries are zero.

Sec. 6.3



Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 19

Queries as vectors

• Key idea 1: Do the same for queries: represent them 
as vectors in the space

• Key idea 2: Rank documents according to their 
proximity to the query in this space

• proximity = similarity of vectors
• proximity ≈ inverse of distance
• Recall: We do this because we want to get away from 

the you’re-either-in-or-out Boolean model.
• Instead: rank more relevant documents higher than 

less relevant documents

Sec. 6.3
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Formalizing vector space proximity

• First cut: distance between two points
• ( = distance between the end points of the two vectors)

• Euclidean distance?
• Euclidean distance is a bad idea . . .
• . . . because Euclidean distance is large for vectors of 

different lengths.

Sec. 6.3
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Why distance is a bad idea
The Euclidean 
distance between q
and d2 is large even 
though the
distribution of terms 
in the query q and the 
distribution of
terms in the 
document d2 are
very similar.

Sec. 6.3
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Use angle instead of distance

• Thought experiment: take a document d and append it 
to itself. Call this document d′.

• “Semantically” d and d′ have the same content
• The Euclidean distance between the two documents 

can be quite large
• The angle between the two documents is 0, 

corresponding to maximal similarity.

• Key idea: Rank documents according to angle with 
query.

Sec. 6.3



Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 23

From angles to cosines

• The following two notions are equivalent.
• Rank documents in decreasing order of the angle between 

query and document
• Rank documents in increasing order  of 

cosine(query,document)
• Cosine is a monotonically decreasing function for the 

interval [0o, 180o]

Sec. 6.3
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From angles to cosines

• But how – and why – should we be computing cosines?

Sec. 6.3



Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 25

Length normalization

• A vector can be (length-) normalized by dividing each 
of its components by its length – for this we use the L2
norm:

• Dividing a vector by its L2 norm makes it a unit 
(length) vector (on surface of unit hypersphere)

• Effect on the two documents d and d′ (d appended to 
itself) from earlier slide: they have identical vectors 
after length-normalization.
• Long and short documents now have comparable weights

∑=
i ixx 2

2

r

Sec. 6.3



Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 26

cosine(query,document)
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qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3
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Cosine for length-normalized vectors

• For length-normalized vectors, cosine similarity is 
simply the dot product (or scalar product):

for q, d length-normalized.

27
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Cosine similarity illustrated

28
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Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.
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3 documents example contd.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Sec. 6.3
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Computing cosine scores

Sec. 6.3
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tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Sec. 6.4
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Weighting may differ in queries vs
documents

• Many search engines allow for different weightings for 
queries vs. documents

• SMART Notation: denotes the combination in use in 
an engine, with the notation ddd.qqq, using the 
acronyms from the previous table

• A very standard weighting scheme is: lnc.ltc
• Document: logarithmic tf (l as first character), no idf

and cosine normalization

• Query: logarithmic tf (l in leftmost column), idf (t in 
second column), no normalization …

Sec. 6.4
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tf-idf example: lnc.ltc

Term Query Document Prod

tf-
raw

tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length = 12 + 02 +12 +1.32 ≈1.92

Sec. 6.4
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Summary – vector space ranking

• Represent the query as a weighted tf-idf vector
• Represent each document as a weighted tf-idf vector
• Compute the cosine similarity score for the query 

vector and each document vector
• Rank documents with respect to the query by score
• Return the top K (e.g., K = 10) to the user
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Computing cosine scores
Sec. 6.3.3
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Efficient cosine ranking

• Find the K docs in the collection “nearest” to the 
query ⇒ K largest query-doc cosines.

• Efficient ranking:
• Computing a single cosine efficiently.
• Choosing the K largest cosine values efficiently.

• Can we do this without computing all N cosines?

Sec. 7.1
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Efficient cosine ranking

• What we’re doing in effect: solving the K-nearest 
neighbor problem for a query vector

• In general, we do not know how to do this  efficiently 
for high-dimensional spaces

• But it is solvable for short queries, and standard 
indexes support this well

Sec. 7.1
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Special case – unweighted queries

• No weighting on query terms
• Assume each query term occurs only once

• Then for ranking, don’t need to normalize query vector
• Slight simplification of algorithm from Lecture 6

Sec. 7.1
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Faster cosine: unweighted query

Sec. 7.1
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Bottlenecks

• Primary computational bottleneck in scoring: cosine 
computation

• Can we avoid all this computation?
• Yes, but may sometimes get it wrong

• a doc not in the top K may creep into the list of K
output docs

• Is this such a bad thing?

Sec. 7.1.1
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Cosine similarity is only a proxy

• User has a task and a query formulation
• Cosine matches docs to query
• Thus cosine is anyway a proxy for user happiness
• If we get a list of K docs “close” to the top K by cosine 

measure, should be ok

Sec. 7.1.1
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Generic approach

• Find a set A of contenders, with K < |A| << N
• A does not necessarily contain the top K, but has many 

docs from among the top K
• Return the top K docs in A

• Think of A as pruning non-contenders
• The same approach is also used for other (non-cosine) 

scoring functions
• Will look at several schemes following this approach

Sec. 7.1.1
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Index elimination

• Basic algorithm FastCosineScore of Fig 7.1 only 
considers docs containing at least one query term

• Take this further:
• Only consider high-idf query terms
• Only consider docs containing many query terms

Sec. 7.1.2
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High-idf query terms only

• For a query such as catcher in the rye
• Only accumulate scores from catcher and rye
• Intuition: in and the contribute little to the scores and 

so don’t alter rank-ordering much
• Benefit:

• Postings of low-idf terms have many docs → these (many) 
docs get eliminated from set A of contenders

Sec. 7.1.2
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Docs containing many query terms

• Any doc with at least one query term is a candidate 
for the top K output list

• For multi-term queries, only compute scores for docs 
containing several of the query terms
• Say, at least 3 out of 4
• Imposes a “soft conjunction” on queries seen on web search 

engines (early Google)
• Easy to implement in postings traversal

Sec. 7.1.2
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3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2
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Champion lists

• Precompute for each dictionary term t, the r docs of 
highest weight in t’s postings
• Call this the champion list for t
• (aka fancy list or top docs for t)

• Note that r has to be chosen at index build time
• Thus, it’s possible that r < K

• At query time, only compute scores for docs in the 
champion list of some query term
• Pick the K top-scoring docs from amongst these

Sec. 7.1.3
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QuantitativeQuantitative

Static quality scores

• We want top-ranking documents to be both relevant 
and authoritative

• Relevance is being modeled by cosine scores
• Authority is typically a query-independent property of 

a document
• Examples of authority signals

• Wikipedia among websites
• Articles in certain newspapers
• A paper with many citations
• Many diggs, Y!buzzes or del.icio.us marks
• (Pagerank)

Sec. 7.1.4
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Modeling authority

• Assign to each document a query-independent quality 
score in [0,1] to each document d
• Denote this by g(d)

• Thus, a quantity like the number of citations is scaled 
into [0,1]
• Exercise: suggest a formula for this.

Sec. 7.1.4
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Net score

• Consider a simple total score combining cosine 
relevance and authority

• net-score(q,d) = g(d) + cosine(q,d)
• Can use some other linear combination than an equal 

weighting
• Indeed, any function of the two “signals” of user happiness –

more later
• Now we seek the top K docs by net score

Sec. 7.1.4
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Top K by net score – fast methods

• First idea: Order all postings by g(d)
• Key: this is a common ordering for all postings
• Thus, can concurrently traverse query terms’ postings 

for
• Postings intersection
• Cosine score computation

• Exercise: write pseudocode for cosine score 
computation if postings are ordered by g(d)

Sec. 7.1.4
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Why order postings by g(d)?

• Under g(d)-ordering, top-scoring docs likely to appear 
early in postings traversal

• In time-bound applications (say, we have to return 
whatever search results we can in 50 ms), this allows 
us to stop postings traversal early
• Short of computing scores for all docs in postings

Sec. 7.1.4
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Champion lists in g(d)-ordering

• Can combine champion lists with g(d)-ordering
• Maintain for each term a champion list of the r docs 

with highest g(d) + tf-idftd

• Seek top-K results from only the docs in these 
champion lists

Sec. 7.1.4
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High and low lists

• For each term, we maintain two postings lists called 
high and low
• Think of high as the champion list

• When traversing postings on a query, only traverse 
high lists first
• If we get more than K docs, select the top K and stop
• Else proceed to get docs from the low lists

• Can be used even for simple cosine scores, without 
global quality g(d)

• A means for segmenting index into two tiers

Sec. 7.1.4
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Impact-ordered postings

• We only want to compute scores for docs for which 
wft,d is high enough

• We sort each postings list by wft,d

• Now: not all postings in a common order!
• How do we compute scores in order to pick off top K?

• Two ideas follow

Sec. 7.1.5
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1. Early termination

• When traversing t’s postings, stop early after either
• a fixed number of r docs
• wft,d drops below some threshold

• Take the union of the resulting sets of docs
• One from the postings of each query term

• Compute only the scores for docs in this union

Sec. 7.1.5
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2. idf-ordered terms

• When considering the postings of query terms
• Look at them in order of decreasing idf

• High idf terms likely to contribute most to score
• As we update score contribution from each query term

• Stop if doc scores relatively unchanged
• Can apply to cosine or some other net scores

Sec. 7.1.5
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Parametric and zone indexes

• Thus far, a doc has been a sequence of terms
• In fact documents have multiple parts, some with 

special semantics:
• Author
• Title
• Date of publication
• Language
• Format
• etc.

• These constitute the metadata about a document

Sec. 6.1
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Fields

• We sometimes wish to search by these metadata
• E.g., find docs authored by William Shakespeare in the year 

1601, containing alas poor Yorick
• Year = 1601 is an example of a field
• Also, author last name = shakespeare, etc
• Field or parametric index: postings for each field value

• Sometimes build range trees (e.g., for dates)
• Field query typically treated as conjunction

• (doc must be authored by shakespeare)

Sec. 6.1
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Zone

• A zone is a region of the doc that can contain an 
arbitrary amount of text e.g.,
• Title
• Abstract
• References …

• Build inverted indexes on zones as well to permit 
querying

• E.g., “find docs with merchant in the title zone and 
matching the query gentle rain”

Sec. 6.1
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Example zone indexes

Encode zones in dictionary vs. postings.

Sec. 6.1
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Tiered indexes

• Break postings up into a hierarchy of lists
• Most important
• …
• Least important

• Can be done by g(d) or another measure
• Inverted index thus broken up into tiers of decreasing 

importance
• At query time use top tier unless it fails to yield K 

docs
• If so drop to lower tiers

Sec. 7.2.1
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Example tiered index

Sec. 7.2.1



Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 65

Putting it all together

Sec. 7.2.4


