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OVERVIEW OF THE COURSE

OVERVIEW



System – The real world (actual thing) to be analyzed

Mathematical Model – A collection of laws and mathematical equations introduced to describe 

the behavior of the actual system (usually based on physical laws or observations). It is 

based on theory and assumptions often used to construct a model. 

Examples: algebraic equations, ordinary or partial differential equations (ODEs or PDEs), 

discrete equations

Computational Model – A numerical approximation or discretisation of the mathematical model 

in a form that can be implemented in computers. Most mathematical models are too 

complicated to solve them exactly and numerical approximations are most of the time 

introduced to solve the problem in available computers.  

Examples: spatial and temporal discretization of PDEs, numerical integration, truncation of 

infinite sums 

Definitions



• Modeling (or Structural) Uncertainty

Arise from assumptions used to build a mathematical model for

A. representing the physical system (the real thing) 

B. representing the interactions of the system with the environment

Comes from the lack of knowledge for the underlying true physics, leading to discrepancies 

(model bias) between the predictions from the model and the observations (measurements). 

The model inadequacy is always present and the question is how to select the best models 

over a family of alternative models introduced to model the same physical phenomenon. 

• Parametric Uncertainty 

Arise from lack of knowledge of the appropriate values of the parameters of a mathematical 

model. Examples include the material properties of a continuum such as solid or fluid, the 

properties involved in constitutive laws, the boundary conditions, etc. 

Sources of Uncertainty



• Computational (or Algorithmic) Uncertainty

linked to the numerical uncertainty arising from the numerical approximations introduced to 

implement the analysis in a computer. Examples include spatial and temporal discretization of 

PDEs using finite element methods, finite difference methods or particle methods. 

• Measurement uncertainty

arises from the variability in the values of the experimental properties due to variability in 

experimental set up, errors in the measuring equipment, and inaccuracies in the data 

acquisition system.

Sources of Uncertainty



• Modeling (or Structural) Uncertainty

Selection of linear or nonlinear constitute laws to represent the material behavior (e.g. 

stress-strain relationship)

Selection of boundary conditions

• Parametric Uncertainty

The values of the constant parameters involved in the constitutive laws are not completely 

known (modulus of elasticity, Poisson ratio, etc)

The values of the stiffness in isolated parts of the structure are unknown

stiffness and damping values of isolation devices are uncertain (dampers, etc)

For contact problems, friction, restitution coefficients are not completely known  

Computational (or Algorithmic) Uncertainty

Spatial discretization of the PDEs using finite element methods

Temporal discretization of the resulting ODEs

• Measurement uncertainty

Uncertainties in measuring the acceleration, strains, etc, in various locations of the structure 

due to errors in the measuring equipment, and inaccuracies in the data acquisition system.

Example 1: Solid Mechanics/Structural Dynamics



• Modeling (or Structural) Uncertainty

Selection of flow model (Filtered Navier Stokes equations + Turbulence model)

Selection of boundary conditions

• Parametric Uncertainty

The values of the constant parameters involved in the Turbulence model

The values of the model are not suitable near boundaries

For some problems (flow in hydrophobic surfaces) the parameters of the boundary conditions 

are not known.

Computational (or Algorithmic) Uncertainty

Spatial discretization of the PDEs using numerical methods (grids, particles, etc.)

Temporal discretization of the resulting ODEs

• Measurement uncertainty

Uncertainties in measuring  flow quantities such as flow fields and drag coefficients 

due to errors in the measuring equipment, and inaccuracies in the data acquisition system.

Example 2: Fluid Dynamics
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Probability is used to quantify uncertainties. Probability models are used to model the 

missing/incomplete information. 

We use Cox interpretation of probability, representing the degree of belief or plausibility 

of a proposition based on available information. It expresses our relative belief in the 

truth of various propositions. It ranks the propositions by assigning a real number to each 

one. The largest the numerical value associated with a proposition, the more we believe it. 

Probabilities are always conditional on information and this conditioning must be stated explicitly. 

Cox has shown that for consistent plausible reasoning the real number we attach to our 

beliefs of the propositions have to obey the usual rules of probability theory. The 

calculus of probability is thus used to manage (quantify and propagate) 

uncertainties (incomplete information) in system analysis.

Probability density functions (PDF) assigned on a parameter are used to quantify how 

plausible each possible value of this parameter is.

Uncertainty Quantification



Probability Logic Fundamentals



Probability Logic Fundamentals
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Consider a mathematical model and a single parameter      of this model. We assume that we 
have incomplete information about the value of the parameter. We know that the parameter 
can take values in the range [a,b] (range of possible values). In the absence of observations, 
lets assume that we can specify how plausible is each possible value of the parameter based 
on theoretical arguments, expert opinions or engineering experience. 

A PDF                is postulated to specify how plausible is each possible value      of the parameter 
based on the available information. The value of       is a constant and not a random 

variable. Its constant value is uncertain to us. A number              is assigned to each 
possible value of the parameter to represent our belief that one value, say       , is more 
plausible than another value, say        . 

Uncertainty Quantification: Concept Demonstration
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Uncertainty Quantification: Concept Demonstration

X

Using the probability theory, the numbers/values                for all                   have to satisfy

A first question that arises is how to propagate this uncertainty through the system. We will use 
the calculus of probability and we will demonstrate this with an very simple example. 
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Normal (Gaussian) Distribution

Uniform Distribution

Examples of PDFs: Normal (Gaussian) & Uniform
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Example 1 (Special Linear Case):

Mathematical or

Computational Model

Uncertainty Propagation: Concept Demonstration
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is the uncertain model parameter;     is a possible value of

is the uncertain output quantity of interest (QoI);     is a possible value of 

is the prediction error 

is the input; Assumed in this example to be known
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Uncertainty Propagation: Concept Demonstration



Using the calculus of probability, the probability distribution (PDF) of y 
conditioned on the value of x is

Uncertainty Propagation: Concept Demonstration

output QoI
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output QoI

robust prediction

The probability distribution of the output QoI Y is given by

Using the calculus of probability, the probability distribution (PDF) of y 
conditioned on the value of x is

Uncertainty Propagation: Concept Demonstration



Measures of Uncertainty in QoI

• PDF

• Mean, std, skewness (asymmetry), curtosis (deviation from normality)

• Confidence intervals

• Probability of QoI lying in a predefined set (failure probability; probability of unacceptable 

performance, first passage problem)

Uncertainty Quantification



Tools for uncertainty propagation in prior system analysis

• Analytical (Useful for demonstration of theory; not applicable in practical engineering 

problems)

• Local expansion techniques: Perturbation, Taylor series, etc (small uncertainties)

• Functional expansion methods: Neumann, Polynomial Chaos

• Numerical integration methods: sparse grid methods

• Reliability-based approximate or asymptotic methods: FORM, SORM

• Stochastic simulation methods: Monte Carlo, Importance sampling, adaptive sampling, subset 

simulation, line sampling, etc 

Uncertainty Propagation

Mathematical or

Computational Modelu Y
( , , )Y g X u E=



Observations or measurement data are collected from the system. 

Let these observations be denoted by     . 

The problem is now to update the uncertainty in the parameters using the information contained 

in the observations. This is achieved using the Bayes theorem. 

Bayes theorem gives the posterior PDF (uncertainty) of the model parameters which quantifies 
how plausible is each possible value of the parameter in light of the available observations 
from the system. This updated PDF of the uncertainty in the parameters is based on two 
quantities. The first one is called the likelihood and gives the probability to observe the 
data given a possible value of the model parameters. The likelihood is influenced by the data. 
The second one is the prior probability of the model parameters, which contains any 
information before data are utilized. The term in the denominator is called the evidence and 
for parameter estimation is just a normalization constant (does not depend on the 
parameters). For model selection, however, this term plays a crucial role. 

Uncertainty Quantification based on Observations
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Example 1 (Special Linear Case):

Mathematical or

Computational Model

Uncertainty Quantification: Concept Demonstration

u Y
( , , )Y g X u E=

is the uncertain model parameter;     is a possible value of

is the uncertain output quantity of interest (QoI);     is a possible value of 

is the prediction error 

is the input; Assumed in this example to be known
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Uncertainty Quantification: Concept Demonstration

Given the data       , the posterior PDF of the parameter     is obtained from Bayes theorem as

Using the mathematical model                          we obtain the likelihood in the form

which for                       gives 

Substituting in (1) along with the prior PDF 

one readily obtains that 

which can be shown to simplify to a normal distribution for the posterior PDF of the parameter
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Prior pdf

Uncertainty Quantification: Concept Demonstration

( )2( ) ,f x N m s=prior PDF



Uncertainty Quantification: Concept Demonstration
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Uncertainty Propagation: Concept Demonstration

The prior robust prediction for the QoI        is ( )2( | ) , 1f y I N m s= +Y

Posterior pdf

Prior pdf

prior robust estimate



posterior robust
estimate

prior robust estimate

Uncertainty Propagation: Concept Demonstration

2 2

2 2

ˆˆ( | , ) , 1
1 1

Yf y Y I N m s s
s s

æ ö+ ÷ç ÷= +ç ÷ç ÷ç + +è ø

Y

The prior robust prediction for the QoI        is ( )2( | ) , 1f y I N m s= +Y
The posterior robust prediction for the QoI      , taking into account the observations 

(measurements), is readily obtained form the fact that the posterior PDF of the model 

parameter is normal

Posterior pdf

Prior pdf



Example 2 (Nonlinear Case):

Mathematical or

Computational Model

Uncertainty Quantification: Example 2
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is the uncertain model parameter;     is a possible value of

is the uncertain output quantity of interest (QoI);     is a possible value of 

is the prediction error 

is the input; Assumed in this example to be known
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Uncertainty Propagation: Concept Demonstration

The posterior PDF of the parameter is given by (for analysis see notes written on the board)

(1)

The posterior PDF does not follow a simple known distribution. This complicates the 
identification of the region of most plausible values the parameters and the subsequent 
system analysis such as the posterior robust prediction since it can not be computed 
using the arguments of example 1. Sampling from the posterior PDF is also a challenging 
problem. Stochastic simulation methods such as Markov Chain Monte Carlo have 
been developed to sample from the posterior PDF.  

Asymptotic approximations (valid for large number of data) can also be used to approximate 
the posterior PDF by a normal PDF. 

Using the total probability theorem, the posterior robust prediction of a QoI     takes the form 

This integral can only be evaluated using numerical integration. However, this is inefficient for 
more than a few model parameters. Need to use more efficient techniques to evaluate 
such integrals. Such tools include asymptotic approximations and stochastic 
simulation algorithms.

( )
22

2
1

1 1 ( )ˆexp ( , )   exˆ( | ) p
2 2

N

k k
k

f x Y xY g x u m
s=

é ùé ù -ê úê úµ - - -ê úê úë û ë û


ˆ( | ) ( | )    ˆ( , )f xf y Y x Yf y dx= ò
Posterior PDF

Y



Tools for uncertainty quantification and propagation in posterior system analysis

• Asymptotic approximations

• Stochastic simulation methods: variants of MCMC (Markov Chain Monte Carlo), Transitional 

MCMC, Sequential Monte Carlo, DRAM, etc

Bayesian Uncertainty Quantification and Propagation



Issues to be considered

• Multi-dimensional uncertain parameter space (we only discussed the 1-d case)

• Models for which the QoI depends nonlinear on the parameters (we discussed the linear 

case)

• Selection of prior PDF for the model parameters

• Ranking alternative models introduced to represent the system – Model averaging

• Account for measurement and computational uncertainties 

• Approximate methods for posterior system analysis 

• Stochastic simulation methods for posterior system analysis: variants of MCMC (Markov Chain 

Monte Carlo), Transitional MCMC, DRAM, etc

• Optimal experimental design: what quantities to measure in order to get the most 

information out of the data in order to reduce uncertainties in model parameters and 

predictions. 

• …

Bayesian Uncertainty Quantification and Propagation


