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1 The Gaussian (Normal) Distribution 

1.1 Introduction  

The material presented in this chapter requires some elementary knowledge of probability and statistics. 
The symbol ( )f x  denotes probability distribution assigned to an uncertain vector x .    

1.2 Standard Normal and General Normal Distribution  

The probability density function (PDF) ( ) ( )Zf z f z  of a standard Gaussian variable or standard normal 

variable Z , denoted also by ( )z , is  

 21 1
( ) exp

22
z z


   
 

  (1) 

As a probability density function, ( )z  integrates to one which arises straightforward using the known 

integral value 2exp( )x dx 



   and replacing / 2x z . The PDF of the standard Gaussian 

variable is shown in Figure 1.  

 

 

 
Figure 1: PDF of standard Gaussian variable 

 

The standard normal distribution has zero mean, 0Z  , and unit variance, 2 1Z  . Specifically, the 

mean of the standard Gaussian variable Z  is 

 [ ] ( ) ( ) 0Z E Z zf z dz z z dz 
 

 
       (2) 
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due to the fact that the functions ( )z  and z  are even and odd functions, respectively, so that ( )z z  is an 

odd function and thus the integral (2) has to be zero. The variance of Z  is 

 2 2 2 2[( ) ] ( ) ( ) ( ) 1Z Z ZE Z z z dz z z dz    
 

 
        

which is obtained using integration by parts, noting that ( ) ( )d z z z dz    and that  

 2 ( )  ( )  ( ) ( ) ( ) 1z z dz z d z z z z dz z dz    
   

   
           

The last equality is obtained using the fact that ( )z  decays faster to zero than z  does at the limits when 

z  tends to  .  

Let a variable Z  be a standard normal distribution and introduce the variable  

 X Z     (3) 

The variable X  follows a normal distribution or Gaussian distribution with PDF  

 
2

2

1
( )

1 1
        exp ( )

22

x
f x

x


 




   
 

     

  (4) 

Note that the PDF in (4) is derived using the fact that for any function ( )X g Z  between two variables 

X and Z  one has for the probability densities that ( ) ( )X Zf x dx f z dz  or  

 
1

1
1

( )

( ) ( ( ))X Z
g x

dx
f x f g x

dz 


    

 
  (5) 

Herein, 1( ) ( ) /g x x     , 
dx

dz
 , ( ) ( )Zf z z . Substituting in (5) one readily derives that 

1( ) (( ) / )Xf x x       which is the same as the first of (4). The second of (4) is obtained by 

substituting ( )z  from (1).  

 

 

Figure 1: PDF of two Gaussian variables with mean 1 and   1 (red) and mean 3 and   2 (green) 
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The normal distribution has mean   and variance 2  since [ ] 0E Z  , 2[ ] 1E Z  ,  

 [ ] [ ] [ ]X E X E Z E Z            

and  

 2 2 2 2 2 2 2[( ) ] [( ) ] [( ) ] [ ]X XE X E X E Z E Z             

A Normal distribution is also denoted by 2( ; , )N X    or equivalently one can write that 2( , )X N   . 

The parameter   is the standard deviation and is a measure of the spread of uncertainty of the variable 
X  around the mean value  .  

The PDF of the Gaussian variable is shown in Figure 2.  

The cumulative distribution function (CDF) ( ) ( )ZF z F z  of a standard Gaussian variable or standard 

normal variable Z , denoted also by ( )z , is given by the integral  

 
21

( ) ( ) exp  
22

z z

Z

t
z f t dt dt

 

 
    

 
   

Using the error function, defined by  

  2

0

2
( ) exp  

x
erf z t dt


   

the CDF of the standard Gaussian variable is given by  

 
1

( ) 1
2 2

z
z erf

      
  

w 

where the function ( )z  satisfies ( ) 1 ( )z z    .  

The CDF of a general Gaussian variable or normal variable X  is  

 2
2

1 1
( ) ( ) exp ( )  

22

x x

XF x f t dt t dt
 

     
    

Letting ( ) /s t    , changing the variable of integration and noting that /ds dt   in the previous 

integrand, the CDF is given in terms of the ( )x  as 

 
1

( ) 1
2 2

x x
F x erf

 
 

               
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1.3 Multivariate Standard Normal and General Normal Distribution 

Let 1( , , )T n
nZ Z Z R   be a vector of independent and identically distributed (i.i.d.) standard 

Gaussian variables. Using the fact that 1, , nZ Z  are independent variables, the probability density 

function (PDF) ( ) ( )Zf z f z  of a standard Gaussian vector or standard normal vector Z  is  

 

   

1 1

2 2
1 1

( ) ( , , ) ( ) ( )

1 1 1 1
        ( ) ( ) exp ( ) exp

2 22 2

n n

T
n nn n

f z f z z f z f z

z z z z z z 
 

 

               

 

    (6) 

The standard normal distribution has zero mean, 0Z  , and identity covariance matrix, 

[( )( ) ]T
Z Z ZE Z Z I      . The zero mean arises from  

 [ ] ( ) 0Z E Z zf z dz



    

and the fact that 1
1

( ) ( ) ( ) ( ) ( ) 0
n

i i n i i i j j
j
j i

z f z dz z z z dz z z dz z dz   
     

     



           

since ( ) 0
ii i i Zz z dz 




  . For i j , the ( , )i j  component of the covariance matrix Z  is 

 , [( )( )] [( )] [( )] 0Z ij i i j j i i j jE Z Z E Z E Z            

since the variables iZ  and jZ  are independent.  

For i j , the ( , )i i  diagonal component of the covariance matrix Z  is 

 2 2
,

1

[( ) ] ( ) ( ) ( ) 1
n

Z ii i i i i i i j j
j
j i

E Z z z dz z dz   
 

 



        

since 2 2( ) ( ) 1
Zi

i i i iz z dz  



    and ( ) 1j jz dz




  ( ( )jz  is a PDF and thus has to integrate to 

one). 

For the special case of a bi-variate standard normal variable  

 2 2
1 2 1 2

1 1
( , ) exp ( )

2 2
f z z z z


     

 

the contour plots corresponding to a level c  are given by 1 2( , )f z z c  or equivalently by 2 2 2
1 2z z   , 

where 1 2(2 ) exp( / 2)c     and represent circles of radius   in the parameter space 1z  and 2z , 

centered at the origin of the parameter space. The contour plots of the bi-variate standard Gaussian PDF 
are shown in Figure 3. The contour plots 1 2( , )f z z c  quantify the spread of uncertainty of the vector Z  

in the parameter space 1 2( , )z z .  
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Figure 3: Contour plots 1 2( , )f z z c  

 

Let a vector Z  be a multivariable standard normal distribution and introduce the vector  

 X AZ    (7) 

as a linear combination of the standard normal variables in Z . The vector X  follows a multivariate 

normal distribution or multivariate Gaussian distribution with PDF  

 
 

1

1/2

1 1
( ) exp ( ) ( )

22 | |

T
nf x x x 


       

  (8) 

where TAA  .The covariance matrix   of the vector X  is positive semi-definite since for any vector 
ny R  with 0y  , the quadratic form 2 2

1( ) 0T T T T T T T
ny y y AA y A y A y            , 

where TA y  . The normal distribution has mean   and covariance matrix  . This can be shown be 

noting that,  

 [ ] [ ] [ ]X E X E AZ AE Z          

since [ ] 0E Z  , and  

 [( )( ) ] [( )( ) ] [ ] [ ]T T T T T T T
X X XE X X E AZ AZ E AZZ A AE ZZ A AA          

since [( )( ) ]T
Z ZE Z Z I    .  

Note that the PDF in (8) is derived using the fact that for any function ( )X g Z  between two variables 

X and Z  one has for the probability densities that ( ) ( )X Zf x dx f z dz  or  



The Multivariate Gaussian (Normal) Distribution 
 

 6

 
1

1

1

( )

( ) ( ( ))detX Z

g x

dx
f x f g x

dz 




     
   

  (9) 

Herein, using (7) and (6) one has that 1 1( ) ( )g x A x    , 
dx

A
dz

 , 

 
1 1

( ) exp
22

T
Z nf z z z



    
. 

Substituting in (9) one readily derives that  

 
 

1 11 1
( ) exp ( ) ( ) | |

22

T T
X nf x x A A x A 


        

 

The Gaussian distribution (8) arises by introducing the matrix TAA   and noting that 
2| | | || | | |TA A A    or 1/2| | | |A   .  

A multivariate normal distribution is also denoted by ( ; , )N X    or equivalently one can write that 

( , )X N   .  

In order to plot the contour plots of the PDF one need to analyze the quadratic term  

 ( ) ( ) ( )TQ x x H x      (10) 

where, for convenience, it was set that 1H   . The contour curves ( )Q x   corresponding to a level 

  are exactly the same as the contour curves of ( )Xf x c  corresponding to the level 

 
1/2

2| |
exp( / 2)

2
n

H
c 


  . The points x  in the parameter space that belong to the contour curve of 

( )Q x  corresponding to a level 0  , have coordinates that satisfy the equation  

 2( ) ( ) ( )TQ x x H x        (11) 

In order to plot these contour curves in the two-dimensional parameter space, the following analysis and 
geometric interpretation of quadratic forms is required.  

1.4 Quadratic Forms – Geometric Interpretation  

Let the two-dimensional vectors 2x R  and 2R  with the components of these vectors defined with 

respect to the usual unitary basis 1 2{ , }e e , 2
1 (1,0)Te R  , 2

2 (0,1)Te R  . Consider the eigenvalues 

1  and 2  and the eigenvectors 1u  and 2u  of the positive definite symmetric matrix H  obtained by 

solving the eigenvalue problem  

 Hu u  
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Figure 4: New coordinate system defined by the orthogonal unit vectors 1u  and 2u , and the coordinates 

1y  and 2y  of the vector x   with respect to the new coordinate system.  

 

From linear algebra results, it is well known that for a positive definite symmetric matrix, the eigenvalues 
are positive i.e. 1 0   and 2 0  , while the eigenvectors 1u  and 2u  are orthogonal. Normalize that 

eigenvectors 1u  and 2u  so that they have unit length. These orthogonal unit vectors 1u  and 2u  define 

certain orthogonal directions in the parameter space 1 2( , )x x  as shown in Figure 4. A new coordinate 

system is introduced, centered at the mean   with unit vectors along the axis 1 2( , )y y  of the new system 

to be the eigenvectors 1u  and 2u .  

Introducing now the matrix of eigenvectors 1 2[ , ]U u u  and invoking known relevant results from linear 

algebra, one can write the orthogonality conditions:  

 T TUU U U I     

 TU HU      

where   is the diagonal matrix of the eigenvalues of H . The first condition implies that the matrix of 

eigenvectors U  is orthogonal. Also, from linear algebra, it is well-known that the orthonormal 
eigenvectors 1u  and 2u  constitute a basis of the two-dimensional vector space or, equivalently, any vector 

2x R   in Figure 4 can be written in terms of the basis unit vectors 1 2{ , }u u  in the new coordinate 

system as  

 1
1 1 2 2 1 2

2

[ ]
y

x y u y u u u Uy
y


 

     
 

  (12) 
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where 2
1 2( , )Ty y y R   are the components of the vector x   with respect to the new coordinate 

system defined by the orthogonal unit vectors 1 2{ , }u u .  

Substituting x Uy   into the quadratic form (10), one derives the quadratic form ( )Q x  in terms of 

the new coordinates 1y  and 2y  of the vector x   in the new coordinate system as 

 
  1 1

1 2
2 2

2 2
1 1 2 2

0
( )

0

ˆ        ( )

T T T T y
Q x x Hx y U HUy y y y y

y

y y Q y




 

   
       

   

  

  (13) 

 

 

 

Figure 5: Contour plots 1 2( , )f x x c  

 

Consider now the points at the contour curve of the function ( )Q x  corresponding to the “energy” level 

 , satisfying the equation (11). Using (13), the points on the contour curve can conveniently be written 
with respect to their coordinates 1 2,y y  in the new system defined by the eigenvector basis as follows  

 2 2 2
1 1 2 2y y     
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Introducing the variables i

i




 , 1, 2i  , this equation can be re-written in the form  

 
2 2
1 2
2 2
1 2

1
y y

 
   

which represents an ellipse with respect to the new coordinate system (see Figure 5 for a geometric 
representation of the contour curves), centered at the point   in the parameter space with principal axis 

along the directions specified by the eigenvectors 1u  and 2u . The sizes of the principal axes of the ellipse 

are equal to 1  and 2 . It is clear that the lengths of the principal axes are inversely proportional to the 

square root of the eigenvalues 1  and 2 . Thus, the eigenvalues and the eigenvectors of the matrix H  

define completely the characteristics of this ellipse in the two-dimensional space. The contour plots of the 
bi-variate Gaussian PDF, shown in Figure 5, quantify the spread of uncertainty in the values of the 
parameters 1x  and 2x   in the two-dimensional parameter space 1 2( , )x x  of the uncertain parameter set X .  

The cumulative distribution function (CDF) ( ) ( )ZF z F z  of a standard Gaussian variable or standard 

normal variable Z  is given by the integral  

 

1

1 1

1 1 1 1

1

( ) ( )

         = ( ) ( ) ( ) ( )

        ( ) ( )

n

n n

z z

z z z z

n n n n

z

z f t d t

t t dt dt t dt t dt

z z

   

 

   

 



  

 
   



   



 

Noting from (7) that 1( )Z A X   , where A  is assumed to be a non-singular matrix (non-degenerate 

case), and for a given value x  the corresponding value of Z  is 1( )z A x   , the CDF of a general 

Gaussian vector or normal vector X  is  

 

1

1

1

( ) ( )

           = ( ) ( )

          ( ) ( )

n

n

x x

X

z z

Z

n

F x f s ds

f t d t f z

z z

 

 





  

 
 







 

where iz  is the i -th component of the vector 1( )z A x   .  

Remarks:  

1. Consider the formulation for n -dimensional case. 

2. Consider the formulation for the degenerate case | | 0  .  

1.5 Marginal of Joint Gaussian Distributions  

Consider a vector nx R  which has a Gaussian distribution with mean nR  and covariance matrix 
n nR  :  
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 1
/2 1/2

1 1
( ) exp ( ) ( )

(2 ) | | 2
T

n
f x x x 


        

 

Let a partition of the random vector nx R  be  

 1

2

x
x

x

 
  
 

 

where 1
1

nx R  and 2
2

nx R , 1 2 1n n  , are two disjoint subsets of x , and let the corresponding 

partitions of the mean and the covariance matrix be  

 
1 11 12

2 21 22

,              





    
        

 

The marginal distributions of the random vector ix , 1, 2i   is normal with mean i  and covariance 

matrix ii , that is,  

 1
/2 1/2

1 1
( ) exp ( ) ( )

(2 ) | | 2
T

i i i ii i in
ii

f x x x 


        
 

1.6 Conditionals of Joint Gaussian Distributions 

The conditional distribution of ix  given jx  ( j i ) is normal with mean  

 1
| ( )i j i ij jj j jx        

and covariance matrix  

 1
|

T
i j jj ij ii ij

       

1.7 Product of Gaussian Distributions of Same Vector Variable  

The product of two Gaussian distributions ( ; , )a aN x    and ( ; , )b bN x    corresponding to the same 

vector variable x  is an un-normalized Gaussian distribution given by  

 ( ; , ) ( ; , ) ( ; , )a a b b c c cN x N x z N x       

where  

 1 1 1( )c a b
       

 1 1( )c c a a b b        
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1
1/2

1 1
1/21

1 1
exp ( ) ( ) ( )

22

1 1
   exp ( ) ( )( )

22

T
c a b a b a b

a b

T
a b a c b a b

a b c

z    


   




 



         

           

 

1.8 Integrals of Gaussian Products  

 

1.9 Exercises  

1. The sum Z X Y   of two independent Gaussian random variables 2( , )X XX N    and 
2( , )Y YY N    is Gaussian with mean Z X Y     and variance 2 2 2

Z X Y    , i.e. 
2 2( , )X Y X YZ N      . 

Hint: Estimate marginal distribution ( ) ( , ) ( | ) ( ) f z f z x dx f z x f x dx    and use the fact that  

2( , )X XX N    and 2| ( , )Y YZ X N X   .  

2. The sum Z X Y   of two Gaussian random variables 2( , )X XX N    and 2( , )Y YY N    is 

Gaussian with mean Z X Y     and variance 2 2 2 2Z X Y X Y       , where   is the 

correlation coefficient given by [ ] / ( )X YE XY   .  

3. The mixture distribution is defined by  

 
1

( ) ( )
n

i i
i

f x w f x


  

 Where ( )if x , 1, ,i n  , are the mixture components and iw  are mixture weights which are non-

negative 0iw   and satisfy 
1

1
n

i
i

w


 . The mixture components ( )if x  are probability distributions. 

Show that ( )f x  is a probability distribution. Estimate the first and second moment of the mixture 
distribution in terms of the first and second moment of the mixture components. Estimate the variance 
of the mixture distribution.  

 

4. The mixture of Gaussian distributions is defined by  

 
1

( ) ( )
n

i i
i

f x w f x


  
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 where the mixture components ( )if x , 1, ,i n  , are Gaussian, i.e. ( ) ( ; , )i i if x N x    and iw  are 

mixture weights which are non-negative 0iw   and satisfy 
1

1
n

i
i

w


 . Estimate the mean and the 

variance of the mixture distribution. Find the marginal distribution of a parameter jx  in x .  

 


