Lecture Notes: Estimation of Likelihood, November 6, 2013

Estimation of Likelihood

Example 1: Scalar Linear Model

Consider the mathematical model
Y=u+E
of a physical process/system, where E is a Gaussian distribution, i.e. E ~ N(0,5%). Given the

values of u and o’ the output quantity of interest Y follows the Gaussian distribution
Y ~ N(u,0?) or, equivalently, the uncertainty in y is given by the PDF

p(ym,az,l):égexp[—zi_z (y—ﬂ)ﬂ o)

Given a set of independent observations/data D = (Y,,Y,,...,Y,) ={Y, },, » We are interesting in

updating the uncertainty in the variables x and o®. This involves the estimation of the
likelihood.

Bayes Theorem: Using Bayes’ theorem, the inference about the values of x and o given the

data and the information | (1 includes the selection of the Gaussian model) is expressed by the
posterior PDF

P, 1 don 1) o« PAY 3w |40 1) plu,a? | 1) )

Estimation of Likelihood: To estimate the likelihood p({\?k}HN | £,6%,1), one can use the fact

that the data are independent and apply successively the product rule of the axioms of probability,
given by

p(b,all)=p(bla1) p(all) @)
to finally derive that
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Proof of (4): Specifically, the independence of the data allows us to assume that given the values
of 1 and o* the measurements of one or more data does not influence the inference about the
outcome of another datum. Mathematically, this can be written as

PO Yo Yo g Vo s,02,1) = p(Y, | pr,0%,1)  forany k 5)

Using now the product rule (3) with b z\fk and a= (Y'\k—l’YAk—ZP"’YAl) , conditioned on the fact that
1 and o are known and the background information 1, one derives that
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p({YAk}1_>k | u,0%,1) = p(YAk’YAk—l'YAk—Z""’YAl | u.o?,1)
= p(Yk |Yk—1’Yk—2""’Y1’:u’62’ ) p(Yk—l’Yk—Z""'Yl | ,u,az, 1 (6)

= p(YAk |/“’O'2’ 1) p(YAk—l’YAk—z"--’Y,;l/'laaz’ )

where the last equality holds due to (5) resulting from the independence of the data. Applying
equation (6) with k replaced by k —1 one has that the second factor of the left hand side (LHS)
of the last equality in (6) is given by

P3| 105 1) = PO, | 16,6%1) POy 5 Y g Y| p1,0%,1) 7)

Substituting (7) into (6) and continuing this process successively for the resulting factors, one
readily derives that

~ ~ ~ ~ k ~
PV Yz Yo lwa®, ) =TT p(Y, | ,o? 1) (8)
p=1

The proof of the first equality in (4) follows from (8) by setting k = N and replacing the index p
by k. The second equality in (4) follows by substituting the value of p(\fk | 1,6, 1) using the
PDFin(1). o

Example 2: Scalar Non-Linear Model

Consider the mathematical model
Y=9g(u)+E 9)

of a physical process/system, where E is a Gaussian distribution, i.e. E ~ N(0,5?). Given the
values of x and o® the output quantity of interest Y follows the Gaussian distribution
Y ~ N(g(x),o?) or, equivalently, the uncertainty in y is given by the PDF

oy 1,0 1) :ﬁexp[—%z[y—g(mﬂ (10)

Given a set of independent observations/data D =(Y,,Y,,...,Y,) ={Y,},,, » We are interesting in

updating the uncertainty in the variables x and o®. This involves the estimation of the
likelihood.

Bayes Theorem: Using Bayes’ theorem, the inference about the values of x and o given the

data and the information I (1 includes the selection of the Gaussian model) is expressed by the
posterior PDF

P, 1 dn 1) o PAY i |02 1) pluo? [1)

Estimation of Likelihood: To estimate the likelihood p({\?k}HN | 1,6%,1), one can use the fact

that the data are independent and apply successively the product rule of the axioms of probability.
This approach is exactly the same as the approach followed in example 1. Thus
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P Y Lo, 1) =] [ (Yl o™, 1)

Substituting the value of p(\fk | £,6%,1) using the PDF in (10), we derive that
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Example 3: Scalar Linear Difference Equation of 1% Order

Consider a mathematical model of a physical process/system represented by the difference
equation

Y, =uY ,+E (11)

where E is a Gaussian distribution, i.e. E~N(0,0°). Given a particular observation
D=(Y,,Y,.Y,.....,Y,) ={Y.},., covering all time instances, we are interesting in updating the
uncertainty in the variables z and . This involves the estimation of the likelihood.

Bayes Theorem: Using Bayes’ theorem, the inference about the values of x and o given the

data and the information 1 (1 includes the selection of the Gaussian model) is expressed by the
posterior PDF

p(ut, 0% [ Joon: 1) o P Fon L6025 1) p(u,o? 1)

Estimation of Likelihood: To estimate the likelihood p({\fk}lﬁN | £,0%,1), one can use the
structure of model (11) to relate the value y, at the current instant to the value of vy, , at the

previous instant and apply successively the product rule of the axioms of probability, to finally
derive that

mmananhmehﬂ)Hf}m% 1&wmﬂ 12)

Proof of (12): Using the product rule (3) with b=Y, and a=(Y, ,,Y,_,.....Y,,Y,), conditioned on

the fact that x and o are known and the background information | , one derives that
p({Y’\k}OHk |,U102' )= p(YAk'YAkfleAkfzw-!YAo |,U'0'21 )

=pY 1Y Yipreo Yo, 1,65, 0) PO, Yo prenn Yo | 10701)

Based on the structure of the model (11), given the values of x and o as well as the value

(13)

Y, :\?H at the previous step or time instant k-1, the output value Y, at time instant K is

completely described and independent of the values of Y, ,,...,Y,. This is expressed in
mathematical form as

p(YAk |YAk—1’YAk—2'---’YA0'ﬂ"72’ )= p(YAk |YAk_1,/1,O'2, 1)
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Substituting the last expression in (13), one readily derives that
p({Y’\k}Oak |IU,(72, I) = p(YAk |Y’\k71uulo-21 I) p(YAk,lyYAk,gl---!YAO |,U,O'2, I)
= p(Y, |Yk_1,,u,0'2, D) pEY ookt /J’O'zy 1)

Applying equation (14) with k replaced by k —1 one has that the second factor of the left hand
side (LHS) of the last equality in (14) is given by

PAY s | 2.0%1) = Yy IVior 1,6%1) PYai Vi g Vo | 1,07,1) (15)

Substituting (15) into (14) and continuing this process successively for the resulting factors, one
readily derives that

(14)

~ ~ ~ ~ k ~ ~
P Vs Vg Yol i o? 1) = [T POV, 1Y, 4ot 0%, 1) (16)
p=1

The proof of the first equality in (12) follows from (16) by setting k = N and replacing the index
p by k. The second equality in (4) follows by deriving the expression for p(\fk |\fk_1,,u,02, 1)
using the particular structure of the model (11). Specifically, given the values of x and o° as
well as the value y, , at the previous step or time instant k —1, the output value y, at time instant Kk
follows the Gaussian distribution y, |y, , ~ N(uY,,,c) or, equivalently, the uncertainty in vy,
given the value vy, , at the previous instant follows the PDF

1 1
Py, | yk—l’/u’az’ )= \/%6 eXp[_g(yk _luyk—l)zj| (17)

Replacing vy, :\fk and vy, , =YAk—1 in the last expression and substituting in (16), one readily
derives that

DT do 1 1) = H raexp{—riz(ﬁ—m““)ﬂ

which completes the proof. o

Example 4: Scalar Non-L inear Difference Equation of 1% Order

Consider a mathematical model of a physical process/system represented by the difference
equation

Yo=9(,,u)+E

where E is a Gaussian distribution, i.e. E~N(0,0°). Given a particular observation
DE(Y’\O'Y’;’Y,\Z""’Y'\N)E{Y’\k}O»N covering all time instances, we are interesting in updating the
uncertainty in the variables z and o . This involves the estimation of the likelihood.



