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1 Bayesian Parameter Estimation: One-Dimensional Case 

Consider the case of one uncertain parameters X  of a model. Bayes theorem is used to make 
inference about the values of this parameter based on a set of data D  and the background 
information I . Specifically the posterior distribution of the model parameter is given by  
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which completely quantifies the uncertainties in the values x  of the model parameter X . Often 
we are interested in summarizing the uncertainty with a couple of indices (uncertainty 
descriptors). These indices are the best estimate and the spread of uncertainty about the best 
estimate or the measure of reliability.  

The best estimate x̂  of the uncertain parameter X  is the most probable value that maximizes the 
posterior probability distribution function (PDF) ( | , )p x D I . It is often called the Maximum A 
Posteriori (MAP) value and corresponds to the most probable value (MPV) of the posterior PDF. 
The best estimate x̂  or the MAP is obtained by postulating the condition 
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The condition for x̂  to be a maximum of ( | , )p x D I  is that the second derivative of ( | , )p x D I  is 
negative. To guarantee that the PDF achieves its maximum at x̂  one needs to check that the 
second derivative is negative, i.e.  
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Alternatively, introducing the function  

 ( ) log[ ( | , )]L x p x D I    (2) 

which is defined as the minus the log of the posterior distribution, the best estimate x̂  of the 
value of the model parameter can equivalently be obtained by minimizing the function ( )L x . 
Thus, the best estimates of the model parameter is obtained by solving the following equation  
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and ensuring that the solution x̂  corresponds to a minimum of ( )L x . This is done by verifying 
that the second derivative is positive, i.e.  
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The uncertainty in the values of the parameter is obtained by considering the spread of the 
posterior PDF about the best estimate x̂ . To obtain as useful estimate of the spread of the 
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uncertainty about the best estimate we expand the posterior PDF ( | , )p x D I  in Taylor series 
around the best estimate and keep the lower order terms in the expansion. This is the standard 
approach for approximating a function by a lower-order polynomial. However, noting that the 
posterior PDF is peaked around the best estimate, it is better to carry out this expansion for the 
function ( )L x  which is varies much more slowly.  

The local behavior of the posterior PDF about x̂  is thus obtained by the Taylor series expansion 
of the function ( )L x  about x̂ , given by  
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Using the fact that we expand around the minimum of ( )L x , the linear term in the Taylor series 
expansion are zero because of (3). Introducing the function ( )H x  as 
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the Taylor series expansion of ( )L x  takes the form  
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Note that at the neighbor of the best estimate, the terms of the order of three or higher in the 
Taylor series expansion of ( )L x  can be neglected and the behavior of the function ( )L x  locally 
is specified by the behavior of the quadratic term. Specifically the spread of uncertainty around 
the best estimate x̂  is determined by the value of ( )H x  at x̂ . Making use of (2) and using only 
up to the quadratic terms in the expansion (4), the posterior PDF is given by   

 2

2

( | , ) exp[ ( )]

1
ˆ ˆ ˆ                exp ( ) ( )( )

2

1
ˆ ˆ                exp ( )( )

2

p x D I L x

L x H x x x

H x x x

 

      
     

  (5) 

It is thus obvious that the updated PDF is approximated by a Gaussian distribution   
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with mean the best estimate x̂  or MAP or the most probable value of the posterior PDF and 
variance 1 ˆ( )S H x  which is the inverse of the second derivative of the function ( )L x  evaluated 
at the best estimate x̂ .  

 

Bayesian Central Limit Theorem  

It can be shown that asymptotically, for large number of data, the posterior PDF tends to the 
Gaussian distribution (6), centered at its most probable value and with variance matrix equal to 
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the inverse of the second derivative (Hessian) of the minus the logarithm of the posterior PDF, 
evaluated at the most probable value. The error of the asymptotic approximation is of order of 

1N   where N  denotes the number of data.  

 

Spread of Uncertainty about the Best Estimate  

The spread of the uncertainty in the parameters around the best estimate x̂  is completely defined 
by the standard deviation   of the Gaussian distribution. That is, it is estimated by the value 

ˆ ˆ( )H H x , the second-order derivative of the function ( )L x , which denotes the variance 
2 1 ˆ( )H x   of the Gaussian distribution.  

 


