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1 Parameter Estimation: Multi-Dimensional Case 

Consider the case of several uncertain parameters 1( , , ) n
nX X X R   of a model. Bayes 

theorem is used to make inference about the values of these parameters based on a set of data D  
and the background information I . Specifically the posterior distribution of the model 
parameters is given by  

 
( | , )  ( | )

( | , )
( | )

p D x I p x I
p x D I

p D I
   (1) 

which completely quantifies the uncertainties in the values 1( , , )nx x x   of the model 

parameters. Similar to the two-dimensional parameter case, the most probable value or the best 
estimate x̂  of the values of the model parameters is the one that maximizes the posterior PDF 

( | , )p x D I  or, equivalently, minimizes the function  

 ( ) log[ ( | , )]L x p x D I    (2) 

Note that the posterior PDF can be written in terms of the function ( )L x  in the form  

 ( | , ) exp[ ( )]p x D I L x    (3) 

1.1 General Case of Several Parameters 

Consider now the general case of n  parameters. The best estimates of the model parameters are 
obtained by simultaneously solving the following system of two equations  

 
ˆ

( ) 0T

x x
L x


    (4) 

and ensure that the solution x̂  corresponds to a minimum of ( )L x . The uncertainty in the values 
of the parameters are obtained by considering the spread of the n -dimensional posterior PDF 
about the best estimate x̂ . 

The local behavior of the posterior PDF about x̂  is obtained by the Taylor series expansion of the 
function ( )L x  about x̂ , given by  

 
ˆ ˆ

1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
T T T

x x x x
L x L x L x x x x x L x x x

 
         

Using the fact that we expand around the minimum value x̂  of ( )L x , the linear terms in the 
Taylor series expansion are zero because of (4). Introducing the Hessian matrix ( )H x  of the 
function ( )L x  by the form  

 ( ) ( )TH x L x   

the Taylor series expansion of ( )L x  takes the form  
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1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )( )
2

TL x L x x x H x x x      

or equivalently   

 
1

ˆ( ) ( ) ( )
2

L x L x Q x     (5) 

where ( )Q x  takes the quadratic form  

 ˆ ˆ ˆ( ) ( ) ( )( )TQ x x x H x x x     (6) 

Note that at the neighbor of the best estimate, the terms of the order of three or higher in the 
Taylor series expansion of ( )L x  can be neglected and the behavior of the function ( )L x  locally 
is specified by the behavior of the quadratic form ( )Q x . Specifically the spread of uncertainty 
around the best estimate x̂  is determined by the contour curves of function ( )Q x . Using the fact 
that x̂  is the minimum of ( )L x , then the Hessian of ( )L x  is positive definite or, equivalently, 

that the quadratic form ( )Q x  is positive for any ˆ (0, ,0)Tx x   . The points x  in the parameter 
space that belong to the contour curve of ( )Q x  corresponding to an energy level 0  , have 

coordinates that satisfy the equation  

 ˆ ˆ ˆ( ) ( ) ( )( )TQ x x x H x x x      

Consider the eigenvalues i , 1, ,i n  ,  and the corresponding eigenvectors iu , 1, ,i n  , of 

the positive definite symmetric matrix ˆ ˆ( )H H x  obtained by solving the eigenvalue problem  

 Ĥu u  

From linear algebra results, it is well known that for a positive definite symmetric matrix Ĥ , the 
eigenvalues are positive i.e. 0i  , 1, ,i n  , while the eigenvectors iu , 1, ,i n  , are 

orthogonal. Normalize that eigenvectors iu , 1, ,i n  ,  so that they have unit length. These 

orthogonal unit vectors define certain orthogonal directions in the parameter space. Introducing 
now the matrix of eigenvectors 1[ , , ]nU u u   and invoking known relevant results from linear 

algebra, one can write the orthogonality conditions:  

 T TUU U U I     

 ˆTU HU      

where   is the diagonal matrix of the eigenvalues of Ĥ . The first condition implies that the 
matrix of eigenvectors Q  is orthogonal. Also, from linear algebra, it is well-known that the 

orthonormal eigenvectors  iu , 1, ,i n  ,  constitute a basis of the n -dimensional vector space 

or, equivalently, any vector ˆ nx x R   can be written in terms of the basis of eigenvectors 

1{ , , }nu u  as  
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1

n

i i
i

x y u Uy


     (7) 

where 1( , , )T n
ny y y R  , which is an alternative representation of the vector ˆx x  using its 

components 1, , ny y   with respect to the new orthonormal basis of eigenvectors 1{ , , }nu u .  

Substituting (7) into the quadratic form (6), one derives the quadratic form in terms of the 
components 1, , ny y  of the vector ˆx x  in the new basis as 

 2

1

( )
n

T T T
i i

i

Q x y U HUy y y y


      (8) 

It is clear that the symmetric matrix associated with the quadratic form in the new basis 

1{ , , }nu u  of the eigenvectors of H  is the diagonal matrix  of the eigenvalues of H .  

Consider now the points at the contour of the function ( )Q x  corresponding to an “energy” level 
 . Such points in the n -dimensional space satisfy the equation 

 ( )Q x   

or, equivalently, using (8), the components with respect to the eigenvector basis satisfy  

 2

1

ˆ ( )
n

i i
i

y Q y 


   

which can be written in the form  

 
2

2
1

1
n

i

i i

y



   (9) 

where i
i




 . Equation (9) represents an hyper-ellipse that is centered in the point x̂  in the 

parameter space with principal axis along the directions specified by the eigenvectors and size of 
the principal axis equal to i , i.e. the size of the principal axes are inversely proportional to the 

square root of the eigenvalues. Thus, the eigenvalues and the eigenvectors of the matrix Ĥ  
define completely the characteristics of this hyper-ellipse in the n -dimensional space, containing 
all points with coordinate values satisfying the equation (9). As in the two-parameter case, the 
contour curve specifies the spread of the uncertainty in the values of the parameters in x  in the 
n -dimensional parameter space.  

Asymptotic Approximation of Posterior PDF: Substituting the Taylor series expansion (5) into 
the posterior PDF (3) and keeping only up to the quadratic terms in the Taylor expansion, the 
posterior PDF is approximated by  

 

( | , ) exp[ ( )] exp[ ( )]

1
ˆ ˆ ˆ                exp ( ) ( )( )

2
T

p x D I L x Q x

x x H x x x

   

      

 

Introducing the covariance matrix  
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 1 ˆ( )C H x  

as the inverse of the Hessian of ( )L x  evaluated at the most probable value x̂  of the model 
parameters, the posterior PDF is approximated by the multi-variable Gaussian PDF.  

 
 

1
2

1 1
ˆ ˆ( | , ) exp ( ) ( )

22 det

Tp x D I x x C x x
C

      
  (10) 

 

Remarks  

1. The Bayesian Central Limit Theorem, outlined for the two-dimensional case in Remark 1, 
holds also for the n dimensional case. Specifically, the posterior PDF asymptotically 
approximates the Gaussian multivariate PDF centered at the most probable value x̂  and with 

covariance matrix 1 ˆ( )C H x , given by (10).  

2. The spread of the uncertainty in the parameters around the best estimate x̂  is completely 

defined by the Hessian matrix ˆ ˆ( )H H x  or equivalently by the covariance matrix 
1 ˆ( )C H x .  

3. In order to obtain the marginal distribution of a parameter, say ix , we need to integrate out 

the values of the rest of the parameters 1 1 1( , , , , , )i i i nx x x x x     using the marginalization 

theorem  

 ( | , ) ( , | , ) i i i ip x D I p x x D I dx     

However, this is a multi-dimensional integral which cannot be evaluated numerically for 
more than a few parameters. However, using the asymptotic Gaussian approximation of the 
joint posterior PDF ( | , )p x D I  defined in (10), one can readily obtain that the marginal PDF 

( | , )ip x D I  is also Gaussian distribution with mean ˆix  and variance iiC  , the ( , )i i  diagonal 

component of the covariance matrix C . The best estimate of  ix  is ˆix  and the spread of the 

uncertainty in the parameter ix  about the best estimate is defined by iiC . It should be 

emphasized that the estimates iiC  of the uncertainties in each one of the parameters ix  give 

an incomplete picture of the uncertainties since they do not take into account the correlation 
between the variables in the vector x .  

4. Using the linear transformation of variables  

 ˆx x Uy   

The fact that asymptotically the variables in x  are Gaussian and that a linear transformation 
of Gaussian variables results in Gaussian variables as well, the posterior PDF for the new 
variables 1 ˆ( )y U x x   are also Gaussian with zero mean and diagonal covariance 

1[ ]TE yy    (see general proof in Remark 4) . Specifically, the posterior PDF of y  is given 

by  



Lecture 4: Parameter inference (multi-parameter case), March 19, 2013 

 5

 
2

2
1

1
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( | , ) exp exp

2 2(1/ )2 1/2 1/ ( )

k
T k

k kkn

y
p y D I y y

    

           



 

The spread of the uncertainty in the parameters in y  along the directions defined by the unit 

eigenvectors iu , 1, ,i n  , are inversely proportional to the square root of the eigenvalues 

i ,  1, ,i n  ,. The variables 1/ i ,  1, ,i n  , provide the spread of the uncertainties of 

the variables iy , 1, ,i n  . Moreover, the variables  1/ i ,  1, ,i n  , give a complete 

picture of the spread of the uncertainties in the n -dimensional parameter space, locally 
around the best estimate x̂ , in the directions specified by the eigenvectors  iu , 1, ,i n  , of 

the Hessian matrix ˆ ˆ( )H H x .  

 


