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1 Parameter Estimation: Multi-Dimensional Case 

Consider the case of several uncertain parameters 1( , , ) n
nX X X R   of a model. Bayes 

theorem is used to make inference about the values of these parameters based on a set of data D  
and the background information I . Specifically the posterior distribution of the model 
parameters is given by  

 
( | , )  ( | )

( | , )
( | )

p D x I p x I
p x D I

p D I
   (1) 

which completely quantifies the uncertainties in the values 1( , , )nx x x   of the model 

parameters. Similar to the one-dimensional parameter case, the most probable value or the best 
estimate x̂  of the values of the model parameters is the one that maximizes the posterior PDF 

( | , )p x D I  or, equivalently, minimizes the function  

 ( ) log[ ( | , )]L x p x D I    (2) 

1.1 Special Case of Two Parameters 

For demonstration purposes, consider first the special case of two parameters, i.e. 2n  . The best 
estimates of the model parameters are obtained by simultaneously solving the following system 
of two equations  

 
ˆ

0,       1, 2
i x x

L
i

x



 


  (3) 

and ensure that the solution x̂  corresponds to a minimum of ( )L x . The uncertainty in the values 
of the parameters are obtained by considering the spread of the two-dimensional posterior PDF 
about the best estimate x̂ . 

The local behavior of the posterior PDF about x̂  is obtained by the Taylor series expansion of the 

function 1 2( ) ( , )L x L x x  about 1 2ˆ ˆ ˆ( , )Tx x x , given by  
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Using the fact that we expand around the minimum of ( )L x , the linear terms in the Taylor series 
expansion are zero because of (3). Introducing the Hessian matrix ( )H x  of the function ( )L x  by 
the form  



Lecture Notes: Parameter inference (two-parameter case), Nov 14, 2013 

 2

 

2 2

2
1 1 2

2 2

2
1 2 2

( )

L L

x x x
H x

L L

x x x

  
    
  
 
   

 

the Taylor series expansion of ( )L x  takes the form  

 1 2 1 2

1
ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( )( )

2
TL x x L x x x x H x x x      

or equivalently   

 1 2 1 2

1
ˆ ˆ( , ) ( , ) ( )

2
L x x L x x Q x     (4) 

where ( )Q x  takes the quadratic form  

 ˆ ˆ ˆ( ) ( ) ( )( )TQ x x x H x x x     (5) 

Note that at the neighbor of the best estimate, the terms of the order of three or higher in the 
Taylor series expansion of ( )L x  can be neglected and the behavior of the function ( )L x  locally 
is specified by the behavior of the quadratic form ( )Q x . Specifically the spread of uncertainty 
around the best estimate x̂  is determined by the contour curves of function ( )Q x  which, by 
making use of (2), are exactly the same as the contour curves of the posterior PDF  

 

( | , ) exp[ ( )]

1
                exp ( )

2

p x D I L x

Q x

 

    

  (6) 

First, we know from linear algebra that the condition for x̂  to be a minimum of ( )L x  is that the 
Hessian of ( )L x  is positive definite or, equivalently, that the quadratic form ( )Q x  is positive for 

any ˆ (0,0)Tx x  . The points x  in the parameter space that belong to the contour curve of ( )Q x  
corresponding to an energy level 0  , have coordinates that satisfy the equation  

 ˆ ˆ ˆ( ) ( ) ( )( )TQ x x x H x x x       (7) 

In order to plot these fixed-energy contour curves in the two-dimensional parameter space, the 
following analysis is required. Consider the eigenvalues 1  and 2  and the eigenvectors 1u  and 

2u  of the positive definite symmetric matrix ˆ ˆ( )H H x  obtained by solving the eigenvalue 

problem  

 Ĥu u  

From linear algebra results, it is well known that for a positive definite symmetric matrix, the 
eigenvalues are positive i.e. 1 0   and 2 0  , while the eigenvectors 1u  and 2u  are orthogonal. 

Normalize that eigenvectors 1u  and 2u  so that they have unit length. These orthogonal unit 

vectors 1u  and 2u  define certain orthogonal directions in the parameter space 1 2( , )x x  as shown in 
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equivalently, any vector 2ˆx x R   in Figure 1 can be written in terms of the basis unit vectors 

1 2{ , }u u  in the new coordinate system as  

 1
1 1 2 2 1 2

2

ˆ [ ]
y

x x y u y u u u Uy
y

 
     

 
  (8) 

where 2
1 2( , )Ty y y R   are the components of the vector ˆx x  with respect to the new 

coordinate system defined by the orthogonal unit vectors 1 2{ , }u u .  

Substituting ˆx x Uy   into the quadratic form (5), one derives the quadratic form ( )Q x  in terms 

of the new coordinates 1 2,y y  of the vector x   in the new coordinate system as 

   1 1 2 2
1 2 1 1 2 2

2 2

0ˆ( )
0

T T T y
Q x y U HUy y y y y y y

y


 


   

       
   

  (9) 

Consider now the points at the contour curve of the function ( )Q x  corresponding to the “energy” 

level  , satisfying the equation (7). Using (9), the points on the contour curve can conveniently 
be written with respect to their coordinates 1 2,y y  in the new system defined by the eigenvector 

basis as follows  

 2 2
1 1 2 2y y     

Introducing the variables i
i




 , 1, 2i  , this equation can be re-written in the form  

 
2 2
1 2
2 2
1 2

1
y y

 
   

which represents an ellipse with respect to the new coordinate system (see Figure 2 for a 
geometric representation of the contour curves), centered at the point x̂  in the parameter space 

with principal axis along the directions specified by the eigenvectors 1u  and 2u . The sizes of the 

principal axes of the ellipse are equal to 1  and 2 . It is clear that the lengths of the principal 

axes are inversely proportional to the square root of the eigenvalues. Thus, the eigenvalues and 
the eigenvectors of the matrix Ĥ  define completely the characteristics of this ellipse in the two-
dimensional space. It should be noted that the contour curve specifies the spread of the 
uncertainty in the values of the parameters 1x  and 2x   in the two-dimensional parameter space. 
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1
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ˆ ˆ( | , ) exp ( ) ( )
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C

      
  (10) 

Remark 1: Bayesian Central Limit Theorem  

It can be shown that asymptotically, for large number of data, the posterior PDF tends to a the 
Gaussian distribution (10), centered at its most probable value and with covariance matrix equal 
to the inverse of the Hessian of the minus the logarithm of the posterior PDF, evaluated at the 
most probable value. The error of the asymptotic approximation is of order of 1N   where N  
denotes the number of data.  

 

Remark 2: Spread of Uncertainty about the Best Estimate  

The spread of the uncertainty in the parameters around the best estimate x̂  is completely defined 

by the Hessian matrix ˆ ˆ( )H H x  or equivalently by the covariance matrix 1 ˆ( )C H x .  

 

Remark 3: Marginal Distribution of 1x  or 2x   

If our interest is to compute the uncertainty in the value of 1x  we need to integrate out the value 

of 2x  using the marginalization theorem  

 1 1 2 2( | , ) ( , | , ) p x D I p x x D I dx    (11) 

For the two-parameter case and a general posterior PDF, the integral (11) is an one-dimensional 
integral that for each value of 1x  can be carried out numerically to yield the marginal posterior 

PDF 1( | , )p x D I . Using, however, the asymptotic Gaussian approximation of the joint posterior 

PDF 1 2( , | , )p x x D I  defined in (10), one can readily obtain that the marginal PDF 1( | , )p x D I  is 

also Gaussian distribution with mean 1̂x  and variance 11 11 / detC H H  , the (1,1)  diagonal 

component of the covariance matrix C . The best estimate of  1x  is 1̂x  and the spread of the 

uncertainty in the parameter 1x  about the best estimate is defined by 11C .  

A similar results holds for the marginal distribution of 2x . 

However, the estimates 11C  and 22C  give an incomplete picture of the uncertainties in both 

1x  and 2x  since they do not take into account the correlation between the variables 1x  and 2x .  

 

Remark 4: Linear Transformation  

Using the linear transformation of variables (8), that is  

 1
1 2

2

ˆ [ ]
y

x x u u Uy
y

 
   

 
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the fact that asymptotically the variables in x  are Gaussian and that a linear transformation of 
Gaussian variables results in Gaussian variables as well, the posterior PDF for the new variables 

1 ˆ( )y U x x   are also Gaussian with mean  

 1 ˆ[ ] ( [ ] ) 0E y U E x x    

and covariance matrix 

 1 1 1 1 1 1ˆ ˆˆ ˆ[ ] [( )( ) ] ( )T T T T T TE yy U E x x x x U U CU U H U U H U                 

which is diagonal. The new variables in the vector y  are thus uncorrelated and the posterior PDF 

of  y  follows a zero-mean Gaussian distribution with diagonal covariance matrix 1  and 

variances inversely proportional to the eigenvalues 1  and 2  of the Hessian matrix Ĥ . 

Specifically, the posterior PDF of y  is given by  

 
 

22

2
1

1 2

1 1 1
( | , ) exp exp

2 2(1/ )2 1/2 1/ ( )

T k

k kk

y
p y D I y y

    

           
  

The spread of the uncertainty in the parameters 1y  or 2y  along the directions defined by the unit 

eigenvectors 1u  and 2u  are inversely proportional to the square root of the eigenvalues 1  and 

2 . The variables 11/   and 21/  provide the spread of the uncertainties of the variables 1y  

and 2y . Moreover, the variables 11/   and 21/   give a complete picture of the spread of the 

uncertainties in the parameter space 1 2( , )x x , locally around the best estimate x̂ , in the directions 

specified by the eigenvectors 1u  and 2u  of the Hessian matrix ˆ ˆ( )H H x .  
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APPENDIX: Marginal and Conditional Distributions of Jointly Gaussian Variables 

 

Theorem 1: 

Consider a vector nx R  which has a Gaussian distribution with mean nR  and covariance 

matrix n nR  :  

 1
/2 /2

1 1
( ) exp ( ) ( )

(2 ) | | 2
T

n n
f x x x 


        

 

Let a partition of the random vector nx R  be  

 1

2

x
x

x

 
  
 

 

where 1
1

nx R  and 2
2

nx R , 1 2 1n n  , and let the corresponding partitions of the mean and the 

covariance matrix be  

 1 11 12

2 21 22

,              





    
        

 

A. Marginal Distributions 

The marginal distributions of the random vector ix , 1, ,i n   is normal with mean i  and 

covariance matrix ii , that is,  

 1
/2 /2

1 1
( ) exp ( ) ( )

(2 ) | | 2
T

i i i ii i in n
ii

f x x x 


        
 

B. Conditional Distributions 

The conditional distribution of ix  given jx  is normal with mean  

 1
| ( )i j i ij jj j jx        

and covariance matrix  

 1
|

T
i j jj ij ii ij

       

 

 

 

 




