Lecture Notes: Parameter inference (single parameter case), Nov 13, 2013

1 Example: Bayesian Estimation of Mean of Gaussian Process

Consider a Gaussian distribution with mean X and variance o to be the mathematical model of
a physical process/system. Specifically, an output quantity of interest Y follows the Gaussian
distribution Y ~ N(X,c?) or, equivalently, the measure of the uncertainty in y given that X = x
is given by the PDF

p(ylx,az,l)=éaexp[—2iz (y—X)Z} (1)

Given a set of independent observations/data D = (Y,,Y,,...,Y,) ={Y, },, , We are interesting in
updating the uncertainty in the mean X of the model. It is assumed that the value of the variance
o is known. For simplicity we use x = x to denote the possible values of the uncertain variable

X.
1.1 Case 1: Uniform Prior

Bayes Theorem: The problem will be solved assuming that the prior distribution of the mean is
uniform, that is,

1/ (/umax = Huin )’ HE [/umin ' :umax]
0 otherwise

p(ﬂ|02.|)={ )

Posterior: Using Bayes’ theorem, the inference about the value of x given the data and the

information | (I includes the selection of the Gaussian model) is expressed by the posterior
PDF

P 3 02 1) oo pY o [0 1) plula? 1) 3)

Likelihood: To evaluate the likelihood p({\?k}bN | £,0%,1), one uses the fact that the data are
independent and applies successively the product rule of the axioms of probability, given by

p(b.all)=p(]a,1) p(all) (4)

to finally derive that

AV 3 .0 1) = Hpmma )= H raexp[—%‘z(vl—mﬂ (5)

Proof of (5): Specifically, the independence of the data allows us to assume that given the values
of u and o? the measurements of one or more data does not influence the inference about the
outcome of another datum. Mathematically, this can be written as

p(YAk|YAk71!YAk721-'-!YA1'/4162:|):p(YAkLU:UZal) forany k (6)
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Using now the product rule (4) with b z\fk and a= (YAk—l’YAk—ZV"’YAl) , conditioned on the fact that
u and o are known and the background information | , one derives that

P |07 1) = PO Vi Voo Yol 0%, 1)
= (Y i Y gnee Yy s 520) POy YooYy | 02, 1) 7
= p(Y, |0 1) s Yoo Vol 0% 1)
where the last equality holds due to (6) resulting from the independence of the data. Applying

equation (7) with k replaced by k —1 one has that the second factor of the left hand side (LHS)
of the last equality in (7) is given by

P3| 1051 = O | 16,6%1) POy Y g Y| p1,0%,1) 8)

Substituting (8) into (7) and continuing this process successively for the resulting factors, one
readily derives that

A A

~ ~ k ~
p(Yk’Yk—l’Yk—Z""'Yl’/ulo-zl I):H p(Yp |,Ua0'21 1) 9)
p=1

The proof of the first equality in (5)follows from (9) by setting k = N and replacing the index p
by k. The second equality in (5) follows by substituting the value of p(\fk | 1,6, 1) using the
PDFin(1). o

Estimation of Posterior PDF: Using (5) to replace the first factor in the reight hand side (RHS) of

(3) and the uniform prior PDF (2), the updates posterior PDF of the uncertain parameter x takes
the form

p(/ul{Yk}l—)N1 I)OCHeXp{ _ﬂ)z} (10)
k=1
It can be readily shown that this is a Gaussian distribution.

Most Probable Value (MPV) or Best Estimate: The function L(x), defined in theory as the minus
the logarithm of the posterior PDF, is given by

L (1) = —1og p(tt [0 0%, 1) = 3 = (F, — 1) +constant (11)

2
120

The MPV 4 maximizes the posterior PDF or, equivalently, minimizes L(u). It satisfies the
condition

I e\ —u)—ﬂi(ﬁ)—w}:o

du ueip k2O
The solution for the MPV £ is readily obtained as

~ 1
ﬂ_ﬁz

Y, (12)
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which is the mean arithmetic average of the measurements (ﬁ,\fz,...,\fN) . It is worth noting that

in this case the MPV does not depends on the magnitude of the variance (error) o® assumed for
the Gaussian mathematical model.

Uncertainty in Model Parameter: The uncertainty in the value of the model parameter « is
characterized by the second derivative of the function L(x) which is given by

The measure of the uncertainty, provided by the square root of the inverse of the second
derivative of L(x) evaluated at the most probable value, is given by

J§={% ] :% (13)

It can be seen that the uncertainty in the estimate depends on the variance o of the Gaussian
mathematical model.

Given the MPV £ and the uncertainty index JS we can write a measure of the uncertainty
interval of « in the form

S -

~ (o}

U+r— (14)
N

which is a familiar result for the reliability of the mean estimate given N measurements.

Asymptotic Posterior PDF: Following the theoretical result and using the MPV 4 and the
uncertainty index S, the posterior PDF follows the Gaussian distribution

(3 0% 1) = J;Z—Hexp[—%(u—mﬂ (15)

Note that this distribution is exact since the function L(x) is quadratic in z.

Figure 1 shows the evolution of the posterior PDF f (u |{\?k}HN ,o°,1) (the posterior uncertainty
in ) as a function of the number of data. Note that data affects the values of 2 and S, while
the posterior PDF in this case is Gaussian for all any N .

Remark 1

The previous analysis can be applied to update the estimates of the uncertain parameter X
involved in the mathematical model

Y=X+E

of a system, where E is the prediction error assumed to follow a zero-mean Gaussian distribution
E~N(m,z%), Y is the output quantity in the system, and D=(Y,,Y,,...,Yy)={Y, }..,, are the
independent measurements of the output quantity Y .



