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1 Bayesian Estimation of Variance of a Gaussian Process 

Consider a Gaussian distribution with mean   and variance X  to be the mathematical model of 
a physical process/system. Specifically, an output quantity of interest Y  follows the Gaussian 
distribution ( , )Y N X�  or, equivalently, the measure of the uncertainty in y  given that 2X    
is given by the PDF 
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Given a set of independent observations/data 1 2 1
ˆ ˆ ˆ ˆ( , , , ) { }N k ND Y Y Y Y   , we are interesting in 

updating the uncertainty in the variance X  of the model. It is assumed that the value of the mean 
  is known. For simplicity we use 2x   to denote the possible values of the uncertain variable 

X . Assume a uniform prior for 2  and derive the expressions for the  

1. Posterior PDF 2( | , , )p D I  . Note that the posterior PDF follows a inverse gamma 
distribution ( , )IG   . What are the values of   and  ? (Already done in Homework 1) 

2. The function 2 2( ) ln ( | , , )L p D I     

3. The MPV (or best estimate) 2̂  of 2  

4. The uncertainty of 2  

5. Retain up to the quadratic terms in the Taylor series expansion of 2( )L   about the most 

probable value 2̂  and derive the Gaussian asymptotic approximation for the posterior PDF 

of 2
1

ˆ( |{ } , , )k Np Y I   

6. [THIS QUESTION WAS NOT COVERED IN CLASS] Compare the posterior PDF with the 
asymptotic Gaussian posterior PDF for the following values of 1, 2,3,4,10,100,1000N  . To 
facilitate comparisons, plot the two posterior PDFs (exact and asymptotic) so that the 
maximum value of each equals unity.  

 

Prior PDF: The uniform PDF for 2  is given by  
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Posterior PDF: Using Bayes’ theorem, the inference about the value 2  given the data D , the 
mean value   and the information I  ( I  includes the selection of the Gaussian model) is 
expressed by the posterior PDF  

 2 2 2( | , , ) ( | , , )  ( | , )p D I p D I p I        (3) 

Likelihood: The likelihood has already been evaluated in Lecture Notes 2 in the form  
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Estimation of Posterior PDF: Using (4) to replace the first factor in the right hand side (RHS) of 
(3) and the uniform prior PDF (2), the posterior PDF of the uncertain parameter 2  given the 
mean value   takes the form 
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Note that the distribution of the parameter 2  is not Gaussian. In fact, it has been shown in Homework 1 
that it follows a inverse gamma distribution.  

Most Probable Value (MPV) or Best Estimate: The function 2( )L  , defined in theory as the 

minus the logarithm of the posterior PDF of 2 , is given by  
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The MPV of 2̂  maximize the posterior PDF or, equivalently, minimize 2( )L  . It satisfies the 
condition 
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The solution for the MPV 2̂  is readily obtained as  
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which is the arithmetic variance of the measurements 1 2
ˆ ˆ ˆ( , , , )NY Y Y .  

Uncertainty in Model Parameters: The uncertainty in the value of the model parameters 2  
given the value of the mean   is characterized by the Hessian of the function 2( )L   evaluated at 

the MPV 2̂ . The Hessian is given by  
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The measure of the uncertainty, provided by the square root of the inverse of the Hessian of 
2( )L   evaluated at the most probable value 2̂ , is given by   
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Given the MPV 2̂  and the uncertainty index S  we can write a measure of the uncertainty 

interval of 2  in the form  
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Asymptotic Posterior PDF: Following the theoretical result for the Bayesian Central Limit 
Theorem and using the MPV 2̂  and the uncertainty index S , the posterior PDF follows 
asymptotically for large number of data N  the Gaussian distribution  
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[THIS QUESTION WAS NOT COVERED IN CLASS] Figure 1 shows the evolution of the 
posterior PDF 2( | , , )p D I   (the posterior uncertainty in 2 ) as a function of the number of 

data. Note that data affects the values of 2̂  and S , while the posterior PDF in this case is 
asymptotically approaching a Gaussian distribution 2 4ˆ ˆ( , 2 / )N N   for large values of N .   


