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1 Analysis of Information Entropy  

1.1 Dependence of information entropy on number of sensors  

Useful results are derived next that show how the information entropy and its lower and 
upper bounds depend on the number of sensors. Let ML  denote the sensor configuration 

involving M  sensors. Define also the expression (   )T T T
M N M NL L L   to represent the 

sensor configuration that is formed from the configuration ML  and N  additional sensors 

placed on the structure as specified by the configuration NL . Then, the following 

proposition holds:  

Proposition 1: The information entropy for a sensor configuration ML  involving M  

sensors is higher than the information entropy for a sensor configuration M NL   involving 

N  additional sensors. That is,  

 0 0( ; , ) ( ; , )M N MH L H L       (1) 

The proof of Proposition 1 was presented for the special case of uncorrelated prediction 
errors in [2]. The proof of the Proposition 1 for the general case of correlated prediction 
errors is more involved and is presented next.  

Proof: Using (12), it suffices to show that the following inequality holds for two sensor 
configurations M NL   and ML :  

 det[ ( )] det[ ( )]M N MQ L Q L    (2) 

where the dependence of 0( ; , )Q L    on 0  and   has been dropped for notational 

convenience. The following statements are next shown to be valid: (i) the matrix ( )Q L  is 

symmetric semi-positive definite, and (ii) the matrix ( )M NQ L   with 1N   admits the 

representation  

 ( ) ( ) ,                0M N M MN MNQ L Q L Q Q       (3) 

where the notation 0MNQ   denotes that the matrix MNQ  is a symmetric semi-positive 

definite matrix. The proof of statement (i) follows by exploiting the special form (13) of 
the matrix ( )Q L . It can be readily shown that for every non-zero vector Ny R  , the 

quadratic form 

 1 1

1 1

( ) ( ) ( ) ( ) ( ) 0
N N

T T T T T
k k

k k

y Q L y L x y L L L x y z L L zq q
- -

= =

=  S  = S ³å å   (4) 

where kz L x yq=  , is always non-negative since the covariance matrix TL LS  is by 

construction symmetric positive definite.  Thus, the matrix ( )Q L  is symmetric semi-
positive definite. The proof of statement (ii) is given in the Appendix A. Given the 
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representation (3) and the fact that MNQ  is semi-positive definite, the proof of 

Proposition 1 follows the same procedure as presented in [2].  For completeness, the main 
steps of the proof are given next. Substituting (3) into (2), it remains to show the validity 
of the inequality 

 det[ ( ) ] det[ ( )],                0M MN MQ L Q Q L N     (5) 

This statement can be shown using the fact that for two symmetric semi-positive definite 
matrices 0

N NA R    and 0
N NB R    the following is true:  

 0 0 0[ ] [ ] 0,      1, ,r rA B A r N        (6) 

where the symbol 0[ ]r A  denotes the r -th eigenvalue of the matrix 0A . The last 

inequality can be derived from the application of the minimax theorem for eigenvalues of 
symmetric matrices.  Applying the inequality (6) for 0 ( )MA Q L , 0 MNB Q , and using 

the fact that 0 0
1

det [ ]
N

r
r

A A





  for any matrix 0A , the inequality (5) is readily derived.  

Proposition 1 implies that the information entropy reduces as additional sensors are 
placed in a structure. Given the interpretation of the information entropy as a measure of 
the uncertainty in the parameter estimates, this should be intuitively expected since 
adding one or more sensors in the structure will have the effect of providing more 
information about the system parameters and thus reducing the uncertainty in the 
parameter estimates.  

As a direct consequence of the Proposition 1, the following proposition is also true.  

Proposition 2: The minimum and maximum information entropies for M  sensors are 
decreasing functions of the number of sensors, M .  

This reduction of the information entropy as a function of the number of sensors is 
expected since increasing the number of sensors has the effect of extracting more 
information from the data. The Proposition 2 follows directly from the Proposition 1, 
independent of the correlation model assumed for the prediction error. Thus, the reader is 
referred to reference [2] for a proof.  

Propositions 1 and 2, shown in this work to be valid for spatially correlated prediction 
error, were employed in [2] to justify the use of the heuristic algorithms FSSP and BSSP 
for efficiently constructing sub-optimal solutions to the optimal sensor location problem.  

1.2  Effect of correlation length on the distance between sensors  

Let ML  be a sensor configuration involving M  sensors that have already been placed on 

the structure. Let also D  be the minimum distance between any two sensors in the sensor 
configuration ML . It is assumed that the correlation length l  of the prediction error is 

small enough compared to the minimum distance D  between any two sensors in ML . 

This is sufficient to guarantee that the prediction errors between the responses at any two 
sensors in ML  are uncorrelated. Consider a new sensor to be placed on the structure and 
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let d  be the distance of the new sensor from one of the existing sensors in ML . Without 

loss of generality it can be assumed that the new sensor will be placed closer to the M -th 
sensor in the configuration. Otherwise, the sensor numbering can be re-arranged such that 
the sensor the closest to the new sensor is the M -th sensor. The sensor location for the 
new sensor is defined by 1

1
dNL R ´Î . Consider that d  varies from values of zero up to the 

order of the correlation length l  so that, using the fact that l  is small compared to D , 
the prediction error at the position of the additional sensor is correlated to the closest M -
th sensor and uncorrelated to the prediction errors from all other 1M -  sensors in the 

sensor configuration ML . Let 1 0
ˆ ( ) ( ; , )MH H L    denote the information entropy as a 

function of the distance d  for 1M +  sensors located according to the sensor 

configuration 1 1(   )T T T
M ML L L+ = . Similarly let also 1 0

ˆ ( ) ( ; , )MQ Q L    denote the 

corresponding information matrix.   

Proposition 3: Consider the problem of placing an additional sensor on a structure 
instrumented with M  sensors. The information entropy for the sensor configuration 

1ML +  involving 1M +  sensors is a decreasing function of the shortest distance d  of the 

new sensor from the other M  sensors, provided that d  is sufficiently small. 
Mathematically, this proposition reads:  

 1 2 1 2
ˆ ˆ( ) ( )     for any     H H       (7) 

or, equivalently, using (12)  

 1 2 1 2
ˆ ˆdet ( ) det ( )     for any     Q Q       (8) 

where 1  and 2  are sufficiently.  

The proof of Proposition 3 is presented in Appendix B and shows that the proposition 
holds for distances d  smaller than the characteristic length of the structural dynamic 
problem under consideration. Considering that the response is a superposition of 
structural modes, this length is controlled by the characteristic length of the highest 
contributing mode which defines the length scale over which the response sensitivities 
with respect to the parameters fluctuate in space.  

Expression (7) or (8) implies that sensors locations further away from an existing sensor 
have a higher information content. Consequently, the spatial correlation of the prediction 
error tends to shift a sensor away from existing sensor locations. Over a distance larger 
than the characteristic length, the spatial change of the response sensitivity will 
eventually control how far away the new sensor is placed from the existing ones.  

2 Optimal Sensor Placement in Structural Dynamics  

2.1 Bayesian inference for parameter estimation 

Consider a parameterized class of structural models (e.g. a class of finite element models 
or a class of modal models) chosen to describe the input-output behavior of a structure. 
Let NR    be the vector of free parameters (physical or modal parameters) in the model 
class that need to be estimated using measured data D  collected from a sensor network. 
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Let { ,  1, , }kD y k N   be the measured sampled response time histories data, where 
0N

ky R  refer to output data, 0N  is the number of observed degrees of freedom (DOF) 

of the structural model, k  denotes the time index at time k t , t  is the sampling 
interval, and N  is the number of sampled data. Let ( ) dN

kx R  , 1, ,k N  be the 

sampled response time histories computed at all dN  model DOFs from a structural model 

that corresponds to a specific value   of the model parameters. The measured response 
and model response predictions at time instant k t  satisfy the prediction error equation  

  ( )  ( )k k ky L x L e     (9) 

where ( )ke   is the prediction error due to modelling error and measurement noise. The 

matrix 0 dN NL R   is the observation matrix comprised of zeros and ones and maps the 
model DOFs to the measured DOFs. The matrix L  therefore defines the location of the 
sensors in the structure.  

Using a Bayesian identification methodology, the uncertainties in the values of the 
parameters   are quantified by probability density functions (PDF) that are obtained 

using the dynamic test data D  and the probability model for the prediction error ( )ke  . 

In what follows, the prediction error vector ( )ke   at time k t  is modeled as a Gaussian 

random vector with zero mean and covariance d dN NR ´SÎ . Also, it is assumed that the 
prediction errors between different time instances are independent. Applying the Bayes’ 
theorem, the updating PDF ( | , )p D   of the set of structural model parameters   given 

the measured data D  and the prediction error parameters t  takes the form:  

 
 

01
( | , ) exp ( ; , )  ( )

22 det
t N

t

NN
p D c J D   



      
  (10) 

where 

 1

10

1
( ; , ) [ ( )] [ ( )]

N
T

t k k k k
k

J D y Lx y Lx
NN

  



       (11) 

represents the measure of fit between the measured and the model response time 
histories, ( )   is the prior distribution for the parameter set  , and c  is a normalizing 
constant chosen such that the PDF in (2) integrates to one.  

2.2 Asymptotic estimate of the information entropy  

An asymptotic approximation of the information entropy, valid for large number of data 
( 0NN  ), is available which is useful in the experimental stage of designing an 
optimal sensor configuration. The asymptotic approximation is obtained by substituting 
 | ,p D   from (10) into the information entropy and observing that the resulting 

integral can be re-written as a Laplace-type integral which can be approximated by 
applying Laplace method of asymptotic approximation [1]. Specifically, it can be shown 
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that for a large number of measured data, i.e. as 0NN  , the following asymptotic 
result holds for the information entropy [2]   

   0 0 0

1 1
; ( ; , ) ln(2 ) ln det[ ( ; , ) ( )]

2 2
I L D H L N Q L Q        �   (12) 

where 0
ˆ( , , )L D    is the optimal value of the parameter set   that minimizes the 

measure of fit ( ; , )J L D  given in (11), and ( ; , )Q L    is an N N   semi-positive 

definite matrix defined as  ( ; , )T
DN N J D      and asymptotically approximated by 

 1

1

( ; , ) [ ( )] ( ( ) ) [ ( )]
N

T T
k k

k

Q L L x L L L x    



       (13) 

in which 1[ / , , / ]T
N
         is the usual gradient vector with respect to the 

parameter set  . The matrix ( , , )Q L    is a semi-positive definite matrix, known as the 
Fisher information matrix (FIM), containing the information about the uncertainty in the 
values of the parameters   based on the data from all measured positions specified in L . 
Details for the derivation in the special case of diagonal covariance matrix 2IsS= , 
where I  is the identity matrix can be found in [2]. Note that the asymptotic estimate of 
the matrix in (13) can readily be obtained by following the same steps as the ones 
presented in [2] for the uncorrelated case.  

In the initial stage of designing the experiment, the data and consequently the values of 

the optimal model parameters ̂  and the form of the prediction error covariance matrix 

S  are not available. In practice, useful designs can be obtained by taking the optimal 

model parameters ̂  and prediction error covariance S  to have some nominal values 0  

and S  to arise from a correlation function chosen by the designer to be representative of 
the system and the expected model and measurement errors.  

3 Formulation as a Discrete-Valued Optimization Problem  

In experimental design, the sensors are placed in the structure such that the resulting 
measured data are most informative about the parameters of the model class used to 
represent the structure behavior. Since the information entropy gives the amount of useful 
information contained in the measured data, the optimal sensor configuration is selected 
as the one that minimizes the information entropy [3]. That is, 

 0arg min ( ; , )best
L

L H L     (14) 

where 0( ; , )H L    is given by (12) and the minimization is constrained over the set of 

pN  measurable DOFs. The lower bound of the information entropy is then given by  

min 0( ; , )bestH H L   .  

It should be noted that the upper bound of the information entropy corresponding to the 
worst sensor configuration is also useful since, when it is compared with the minimum 
information entropy for the same number of sensors, it gives a measure of the reduction 
that can be achieved by optimising the sensor configuration. The maximum information 
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entropy and the corresponding worst sensor configuration can be obtained by maximizing 
instead of minimizing the information entropy. The worst sensor configuration is 
obtained as  

 0arg max ( ; , )worst
L

L H L     (15) 

while the upper bound of the information entropy is given by max 0( ; , )worstH H L    

3.1 Computational algorithms 

Two heuristic sequential sensor placement (SSP) algorithms, the forward (FSSP) and the 
backward (BSSP), were proposed [15,17] for constructing predictions of the optimal and 
worst sensor configurations.  

According to FSSP (algorithm 1), the positions of 0N  sensors are computed sequentially 
by placing one sensor at a time in the structure at a position that results in the highest 
reduction in information entropy.  BSSP (algorithm 2) is used in an inverse order, starting 
with dN  sensors placed at all DOFs of the structure and removing successively one 

sensor at a time from the position that results in the smallest increase in the information 
entropy.  

Algorithm 1: Forward Sequential Sensor Placement (FSSP) 

1. Initialize: no sensors selected, number of sensors 0N =  and sensor 
configuration {}NL =  

2. While number of sensors N <  maximum number of sensors 0N   do 

a. Consider combinations with one additional sensor, 1N N= + . 
b. For counter i =1 to number of possible sensor positions 1dN N- +   

i. Obtain configuration NL  by adding sensor i to configuration 1NL -  

ii. Evaluate information entropy of new sensor configuration NL . 

c. End 
d. Select the sensor configuration NL  that minimizes the information 

entropy. 
3. End 

 

Algorithm 2: Backward Sequential Sensor Placement (BSSP) 

1. Initialize: all sensors selected, number of sensors dN N=  and sensor 

configuration NL  

2. While number of sensors 1N >  do 
a. Consider combinations with one sensor less, 1N N= - . 
b. For counter i =1 to number of possible sensors to be removed 1N +   

i. Obtain configuration NL  by removing sensor i from configuration 

1NL + ,  

ii. Evaluate information entropy of new sensor configuration NL . 

c. End 
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d. Select the sensor configuration NL  that minimizes the information 

entropy. 
3. End 

 

Using the FSSP algorithm an approximation to the worst sensor configuration can also be 
obtained efficiently by placing successively one sensor at a time in the position that 
results in the smallest decrease in information entropy. Similarly, using the BSSP 
algorithm, an approximation to the worst sensor configuration is obtained by removing 
successively one sensor at a time from the position that results in the highest increase in 
the information entropy value.  

The computations involved in the SSP algorithms are an infinitesimal fraction of the ones 
involved in the exhaustive search method and can be done in realistic time, independently 
of the number of sensors and the number of model DOFs. Although the SSP algorithms 
are not guaranteed to give the optimal solution, they were found to be effective and 
computationally attractive alternatives to the GAs. However, when necessary, GAs can 
improve the SSP estimates, converging to the optimal solutions.  

4 Applications in Structural Dynamics  

The optimal sensor location methodology is implemented for applications in structural 
dynamics. For a linear structural model, arising from the discretization of continuous 
domain using the finite element method, the governing equations of motion are  

 ( ) ( ) ( ) ( )Mu t Cu t Ku t z t       (16) 

where d dN NM R ´Î , d dN NC R ´Î  and d dN NK R ´Î  are the mass, damping and stiffness 
matrices, respectively, ( ) dNu t R  is the displacement response vector, ( ) INz t R  is the 

vector of independent input forces, and d IN NR   is the input selection matrix. The 
measured response quantities are assumed to be either displacements, or velocities or 
absolute accelerations with the sampled measured response dN

kx R  given respectively 

by either ku , or ku  or ku . Strain measurements can readily be accommodated in the 

formulation.  

The optimal sensor location design depends on the type of parameters considered for 
estimation. Two different categories of problems are treated next based on the selection 
of the model and the parameter set.  

4.1  Design of optimal sensor locations for modal identification 

The first category deals with the estimation of the modal coordinate vector mRx Î  

( dm N£ ) encountered in modal identification. The objective is to design the sensor 

configuration that provides the most information in order to estimate the modal 
coordinate vector x . In this case, the parameter set   . Following the conventional 

modal analysis, the response vector dNx R  is given with respect to the parameter set    

in the form x   , where dN mR ´FÎ  is the mode shape matrix for m  contributing 
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modes. Noting that x    and substituting into (13), the information matrix takes the 

form  

 1
0( , , ) ( , ) ( ) ( ( ) ) ( )T TQ L Q L L L L Lq s s s -º = F S F   (17) 

which is independent of the nominal parameter values 0 . In addition, the optimal sensor 

locations are independent of the excitation used.  

Based on the form of (17), a non-singular FIM matrix ( , )Q L   is obtained only if the 

number of sensors, 0N , is at least equal to the number of contributing modes, m , or the 

number of parameters, Nq  ( N mq = ). Otherwise, for 0N m< , the matrix ( , )Q L   in (17) 

is singular and the determinant of the FIM will be zero for any sensor configuration. 
Thus, for 0N m<  the optimal sensor location problem cannot be performed when a 

uniform prior PDF is assumed. This means that the information content in the measured 
data is not sufficient to estimate all the parameters simultaneously. The problem is critical 
for the FSSP algorithm where one starts with no sensors placed on the structure and 
sequentially adds one sensor at a time on the structure. The estimation of the sensor 
locations will be a problem for a small number of sensors, 0N m< , and will considerably 

affect the optimal sensor location for 0N m³ . The remedy is to use a non-uniform prior 

so that the matrix 0( , ) ( )Q L Q   is non-singular. In this case, the optimal sensor 

locations will also depend on the prior information along certain directions in the 
parameter space for which the model itself fails to provide information due to 
insensitivity of output quantities with respect to the parameters in these directions.  

For non-informative uniform prior PDF for which 0( ) 0Q   , one way to optimally 

place sensors in the structure for 0N m<  is to maximize the product of the 0N  non-zero 

eigenvalues in the FIM, instead of maximizing the product of all eigenvalues. This 
procedure allows to systematically and optimally place sensors in the structure even for 
the unidentifiable case that arises for a small number of sensors. This procedure 
considerably improves the FSSP estimates for 0N m³ .  

4.2 Design of optimal sensor locations for model parameter estimation 

The second category deals with the estimation of structural-related properties. In this 
case, the parameter set   includes variables related to stiffness, mass, and damping 
characteristics. The system mass ( )M q , stiffness ( )K q  and damping ( )C q  matrices 

depend on the parameter set  . To compute the response sensitivity matrix kx  needed 

in (13), a sensitivity analysis needs to be performed. Following a conventional modal 
analysis, writing the response vector in the form ( ) ( )u t t  , where the modal 

coordinates ( )t  satisfy the uncoupled system of modal equations  

 * TC zx x x+ +L =F G    (18) 

and differentiating the modal equations with respect to the i -th component iq  of the 

parameter set q , the following analytical differential equations for the components 
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( )
( )i

i

x t
t







, 1, ,i Nq=   of the sensitivity matrix 1 2( ) [ ( ), ( ), , ( )]Nx t t t t
      are 

readily obtained in the form:  

 ( ) ( ) ( )i i
i

t t t  



  


  (19) 

where ( )i t  is computed from the modal equations (18) to satisfy the following system of 

equations  

 
*

* ( )
( ) ( )

T

i i i
i i i

C
C t z t       

  
    

      
  

  (20) 

The matrix L  in (18) and (20) is diagonal with elements 2
iw , while assuming classically 

damped modes the matrix *C  is also diagonal with elements 2 i iz w , where iw  and iz  are 

the i -th modal frequency and modal damping ratio of the structure, respectively. The 
formulation in the modal space allows one to perform computationally efficient analyses 
for models with a large number of DOFs by selecting only the contributing modes.  The 
sensitivities of the eigenvalues in L  and the eigenvectors in F  are readily obtained from 
the sensitivities of the mass and stiffness matrices using well established techniques [4,5]. 
For more information on sensitivity of eigenvalues and eigenvectors for complex 
eigensystems, the reader is referred to the overview paper in [6].   

The optimal sensor locations depend on the location and type of excitations used. Also, in 
contrast to the modal identification case, the matrix 0( , , )Q L q s  may be non-singular even 

for one sensor since the time history response obtained from the model for a given 
nominal input excitation may contain enough information from all contributing modes of 
the structure in order to estimate the parameter set q . As before, in the case that FIM is 
singular, a systematic way to optimally place the first few sensors in FSSP method is to 
maximize the product of the non-zero eigenvalues of the FIM.  

5  Numerical Demonstration  

5.1 Simply-supported continuous beam model 

The objective is to demonstrate the problem that arises in the design of the optimal sensor 
location for spatially continuous structures in which two sensors can potentially be placed 
very close to each other. The design of the optimal location of two sensors for a simply 
supported uniform beam of length h  is considered. The mode shapes needed in (17) are 
given be sin( / )n x hp  for the n  mode and they are independent of the material and cross-
sectional properties. The sensors can be placed at any point along its axis. To illustrate 
the effect of spatial correlation, it is assumed that only the third mode contributes to the 
dynamics of the beam. The correlation function for the prediction error between two 
points located at distance h  is given by ( ) exp( / )R     , with 2 0s =  and equal 

variance values 2
ii sS =  for all i . A uniform prior PDF is assumed so that 0( ) 0Q   .   
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The contour plots of 0det ( , , )Q L    as a function of the locations /x h  of the two sensors 

along the beam axis are presented in Figure 1. Representative values of the correlation 
lengths l= 0, 0.1 h , 0.2 h  and 0.4 h  have been selected to demonstrate the effect of the 
correlation length on the sensor locations. The optimal locations of the two sensors 
correspond to the combination of approximately the three locations /x h =0.167, 0.5 and 
0.833 on which the third mode peaks (negative or positive peaks). It is clearly seen that 
the spatial correlation of the prediction errors affects the optimal location of sensors. The 
uncorrelated case (l= 0) results in six distinct global optimal sensor configurations 
arising from all possible combinations of the locations of the three peaks of the third 
mode shape. However, the three optimal sensor configurations with coordinates (0.167, 
0.167), (0.5, 0.5) and (0.833, 0.833) shown in Figure 1(a) correspond to both sensors 
placed at exactly the same locations. Such sensors locations are contrary to expectations 
since in practical applications sensors are never placed at the same position or 
neighborhood positions. These locations have exactly the same information content and 
such configurations should be avoided.  

The selection of these three sensor configurations arises from the uncorrelated 
assumption used for the prediction errors. In reality, prediction errors between 
neighborhood locations are correlated due to model error. Such correlation when it is 
included in the formulation results in optimal sensor locations that are consistent with 
designer’s expectations. This is seen in the results for non-zero correlation length. For 
l= 0.1 h , only three global solutions, with coordinates approximately (0.167, 0.5), 
(0.167, 0.833) and (0.5, 0.833) shown in Figure 1(b), are left as global solutions. As 
before, such solutions arise from all possible combinations of the locations of the three 
peaks of the third mode shape, excluding the sensor configurations that involve both 
sensors at exactly the same position. As the correlation length increases to l= 0.2 and 
l= 0.4, only two global solutions remain (positions with coordinates (0.167, 0.5) and 
(0.5, 0.833) as it is seen in Figures 1(c) and 1(d) which, due to symmetry of the third 
mode shape, correspond to sensors placed approximately at the peaks of the third mode 
with opposite sign. The global optimal sensor configuration involving one sensor at the 
location /x h =0.167 and the second sensor at location /x h =0.833 become suboptimal 
as the correlation length increases, since the correlation of the prediction errors for these 
two locations becomes stronger. As a result, one of these two positions is excluded from 
the optimal positions as the two sensor locations tend to provide similar information 
content to the total FIM. Finally, it should be noted that higher correlation lengths 
(l= 0.4) have the effect of moving the optimal sensor locations slightly away from the 
positions where the contributing third mode peaks.  

It is clearly demonstrated that the minimum distance between the two sensors depends, 
among other factors, on the spatial correlation length assumed between the prediction 
errors. This has implications in designing sensor locations for models with potentially 
very close sensor locations, as arising from fine mesh discretization of continua using 
numerical finite element methods. Introducing spatial correlation between prediction 
errors, the optimal sensor locations become independent of the mesh refinement in finite 
element models, a property that is desirable in experimental design to avoid redundant 
information provided from closely spaced sensors.  
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Figure 1: Contour plots of 0det ( , , )Q L θ Σ  as a function of the locations /x h

=
 of the two sensors 

along the beam axis (a) λ 0 h  (uncorrelated case), (b) λ 0.1 , (c) λ 0.2 , and (d) 
0.4 .  

= = h h
λ= h
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5.2 20-DOF Spring-mass chain-like model  

The methodology is applied next to a 20-DOF chain-like spring-mass model, fixed at the 
bottom spring end and free at the top twentieth mass. The DOF are numbered 
consecutively starting from the bottom of the chain. A model with a small number of 
DOFs is purposely chosen to facilitate comparisons between the two SSP algorithms and 
the exact exhaustive search method that considers all possible sensor configurations. The 
structure is subdivided into five substructures that each consist of four consecutive 
masses and springs. The structure is parameterised using five parameters, with the i -th 
parameter modelling the spring stiffness ik  of the i -th substructure. The masses are 

considered to be same for all links in the chain. The distance between any two 
consecutive masses in the chain is chosen to be h . The nominal structure corresponds to 
a uniform stiffness distribution along the chain. The ratio of the spring stiffness ik  to the 

mass im  of a link is chosen to be /i ik m  1 [ 2/l s ]. Classical normal modes are assumed 

with the modal damping fixed at 5% for all modes. The structure is subjected to an 
impulse excitation of unit magnitude at the top mass of the model. This impulse 
excitation can be viewed as simulating the excitation in impact hammer tests.  

Optimal sensor placement is applied to identify the optimal sensor locations for the 
estimation of the stiffness ik , 1, ,5i =   of the five substructures in the system. The time 

history of the response is sampled with a time step tD  equal to min / 6T , with minT  the 

period of the largest natural frequency of the system. A total of 2048N =  points is 
considered in the response. The total measurement time N tD  is slightly larger than 13 
times the natural period of the system.  

Normalized information entropy results are presented by defining the information entropy 
index (IEI) as 

 
1/ 2

0
0 0

0

( , , )
( ; , ) ( ; , )]

( , , )

det
IEI( ) exp[

det
ref

ref

Q L
L H L H L

Q L


 


 

   
 


  


  (21) 

where ,( ; )refH L    is the reference information entropy computed for a reference sensor 

configuration refL . The IEI is a measure of the uncertainty in the parameter estimates 

relative to the uncertainty obtained for the reference sensor configuration. The reference 
sensor configuration is selected as the one involving sensors at all model DOFs so that 
the IEI( )L  values, when compared to one, give the effectiveness of the sensor 

configuration and the maximum improvement that can be achieved by sensor 
configuration strategies. 

The prediction error correlation model ( ) exp( / )R      is used. To study the effect of 

spatial correlation on the optimal sensor locations, results are presented for two values 
0.002hl=  and hl=  of the correlation length. The first value 0.002hl= , chosen to 

be very small compared to the distance between the masses in the chain, corresponds to 
spatially uncorrelated prediction errors. The second value hl= , chosen to be of the 
order of the distance between the masses in the chain, strongly correlates the prediction 
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errors between measurements at any two consecutive masses. To facilitate the 
interpretation of the optimal sensor configuration, and to clearly demonstrate the effect of 
spatial correlation, the number of contributing modes is kept small and equal to three so 
that the characteristic length of the problem, defined by the characteristic length of the 
highest mode (for the third mode is approximately 20 / 3 7h h» ), is significantly larger 
than the correlation length hl= .  

The minimum (best) and maximum (worst) information entropy index values IEI( )L  as a 

function of the sensors, computed by the exhaustive search method (exact method) and 
the FSSP and BSSP algorithms, are shown in Figure 3 for both the spatially uncorrelated 
prediction error (UNC-PE) and spatially correlated prediction error (COR-PE) cases. The 
IEI values predicted by the heuristic FSSP and BSSP methods are extremely good 
estimates of the minimum information entropy predicted by the exhaustive search 
method. Comparing the optimal predictions from the FSSP and BSSP methods, the 
results are indistinguishable for all sensor numbers considered and for both the UNC-PE 
and COR-PE cases. Differences between the two heuristic methods exist for the 
maximum (worst) IEI values for the UNC-PE case for a small number of sensors where 
the BSSP method fails to give the exact estimates. If necessary, these estimates for the 
worst IEI can be improved to match the exact estimates by using GAs.   

The minimum and maximum IEI are decreasing functions of the number of sensors 
placed in the structure at the optimal and worst positions, respectively. This is consistent 
with the theoretical result stated in Proposition 2. Comparing the variation of the 
minimum IEI values as a function of the number of sensors, it can be observed that a 
significantly higher reduction rate is observed for the COR-PE case in Figure 3(b). 
Specifically, a drastic reduction in the minimum IEI is observed for the first 5 sensors, 
accounting almost for the most information provided by the data, while the remaining 
fifteen sensors cause only a relatively small reduction. It is evident that a small number of 
sensors placed at their optimal locations may contain more valuable information than a 
higher number of sensors arbitrarily placed in the structure. For example, for the COR-PE 
case, one, four and five sensors placed at their optimal locations yield better information 
than seven, seventeen and eighteen sensors, respectively, placed at their worst sensor 
locations.  

The corresponding condition numbers for the information matrix 0, ,( )Q L    are also 

computed using the exhaustive search method and the two SSP methods and shown in 
Figure 3. Reasonable values of the condition numbers are observed in Figure 3 which 
indicates that in all cases considered the five parameter values are identifiable, 
independent of the number of sensors.  

The optimal sensor locations as a function of the number of sensors are shown in Figure 4 
for the FSSP and BSSP algorithms and for both the UNC-PE and COR-PE cases. Given a 
prediction error model (UNC-PE or COR-PE), it is seen that both the FSSO and BSSP 
algorithms give exactly the same estimates. These results are also compared to the ones 
obtained from the exact method for up to 7 sensors. The SSP predictions coincide in all 
cases with the exact one provided by the exhaustive search method.  

Comparing Figures 4(a,b) with Figures 4(c,d), it is clear that the prediction error 
correlation affects considerably the optimal location of sensors. Specifically, for the 



Optimal Sensor Placement in Structural Dynamics 
 

 14 

UNC-PE case, the optimal locations of the first three sensors are concentrated at the top 
masses (DOFs 20, 19 and 18) of the chain model, while for the COR-PE case the sensors 
are uniformly distributed along the chain at the 20th, 12th and 4th DOFs. Neighboring 
sensor locations are not promoted in the case of spatial correlation due to the fact that 
these locations provide similar information. It should be noted that as the number of 
sensors increases, the locations are uniformly distributed along the chain for the COR-PE 
case, while for the UNC-PE case the location of the sensors tend to cluster around the 
20th, 12th and 4th DOFs which are the first three optimal locations predicted by the COR-
PE model. The results in this application are consistent with the derived theoretical 
results showing that introducing spatial correlation between prediction errors tends to 
keep the sensors apart at a distance controlled by the magnitude of the correlation length. 
In contrast, UNC-PE models tend to cluster sensors at locations that provide redundant 
information. In this case, a number of sensors are wasted before new sensors are installed 
at locations that provide more useful information.  
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 Figure 2: Information entropy index as a function of the number of sensors for the optimal and 
worst sensor configuration; (a) λ = 0.002h and (b) λ = h. 
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Figure 3: Condition number of matrix 0, ,( )Q L θ Σ  as a function of the number of sensors for the 

optimal and worst sensor configuration (a) λ = 0.002h and (b) λ = h. 
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Figure 4: Optimal sensor configuration (a) FSSP for λ = 0.002h, (b) BSSP for λ = 0.002h, (c) 
FSSP for λ = h, (d) BSSP for λ = h; Exhaustive search (black squares). 
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Appendix A: Proof of Representation (3)  

The representation (3) and the semi-positive definiteness of the matrix MNQ  is shown as 

follows. First note that using (13) the matrix ( )M NQ L   for the sensor configuration M NL   

involving M N+  sensors admits the representation  

 1

1

( ) ( ) ( )
N

T
M N M N k M N k

k

Q L L x A L xq q
-

+ + +
=

=  å   (A.1) 

where the matrix A  is given by T
M N M NA L L+ += S  with M NL +  given by 

(    )T T T
M N M NL L L+ = . Denoting by 1B A-º  the inverse of A , partitioning the matrices A  

and B  according to the formulas  

     and    M MN M MN

NM N NM N

A A B B
A B

A A B B

é ù é ù
ê ú ê ú= =ê ú ê úë û ë û

  (A.2) 

where T
M M MA L L= S , T

MN M NA L L= S , T
N N NA L L= S , and using the fact that AB I= , the 

partitions of B  are given with respect to the partitions of A  in the form  

 

T
M M NM NM MM

T T
M NM NM N MN

T
NM NM N N NN

NM M N NM NM

A B A B I

A B A B O

A B A B I

A B A B O

+ =

+ =

+ =

+ =

  (A.3) 

Note that the covariance matrices A , MA  and NA  are by construction symmetric positive 

definite matrices which also imply that B  and the partitions MB  and NB  are also 

symmetric positive definite matrices. The symmetry of the covariance matrices NA  and 

NB  has been used to simplify the expressions in (A.3). Solving the system of (A.3) with 

respect to the partitions of B , one readily derives   

 1 1 T
M M M NM NMB A A A B- -= -   (A.4) 

 1T T
MN NM M NM NB B A A B-= =-   (A.5) 

 1 1[ ]T
N N NM M NMB A A A A- -= -   (A.6) 

Substituting 1A B- =  in (A.1), noting that ( ) [( )   ( ) ]T T T
M N k M k M kL x L x L xq q q+  =    and 

expanding the right hand side using the partitions of B  as obtained in (A.4)-(A.6), one 
readily derives that  

 *

1

( ) ( ) ( )
N

T
M N M k M M k NM

k

Q L L x B L x Qq q d+
=

=   +å   (A.7) 
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where *
NMQd  is given by  

 

*

1

[( ) ( ) ( ) ( ) ( ) ( )]
N

T T T T
NM N k NM M k M k NM N k N k N N k

k

Q L x B L x L x B L x L x B L xq q q q q qd
=

=   +   +  å
  (A.8) 

The representation (3) follows from (A.7) by substituting MB  from (A.4), expanding the 

first term in the right hand side and noting that 1

1

( ) ( ) ( )
N

T
M M k M M k

k

Q L L x A L xq q
-

=

=  å , 

while NMQd  in (3)  is given by the remaining terms as  

 1 *

1

( ) ( )
N

T T
NM M k M NM NM M k NM

k

Q L x A A B L x Qq qd d-

=

=-   +å   (A.9) 

Noting from (A.5) that  1 1T T
M NM NM NA A B B- -- =  and substituting in (A.9) results in  

 1 *

1

( ) ( )
N

T T
NM M k NM N NM M k NM

k

Q L x B B B L x Qq qd d-

=

=   +å   (A.10) 

Introducing the auxiliary matrices , ( )M k M kE L xq=   and , ( )N k N kE L xq=   in (A.8) and 

(A.10), one finally simplifies the expression for NMQd  in the form   

 1
, , , , , , , ,

1

[( ) ( ) ]
N

T T T T
NM NM M k N NM M k N k NM M k NM M k N k N k N N k

k

Q B E B B E E B E B E E E B Ed -

=

= + + +å (A.11) 

Factoring out 1
,N NM M kB B E-  from the first two terms and ,N kE  from the last two terms on 

derives 

 

1
, , , , , ,

1

1
, , , ,

1

[( ) ( ) ]

         [( ) ( )]

N
T T T T T T

NM M k NM N k N N NM M k M k NM N k N N k
k

N
T

NM M k N N k N NM M k N N k
k

Q E B E B B B E E B E B E

B E B E B B E B E

d -

=

-

=

= + + +

= + +

å

å
  (A.12) 

Note that the last expression is symmetric and semi-positive definite since for every non-
zero vector Ny R   ( 0y  ) the quadratic form  

 1 1
, , ,

1 1

[ ( ) ( ) ] 0
N N

T T T T
NM NM M k N k N NM M k N N k N

k k

y Q y y B E B E B B E B E y z B zd - -

= =

= + + = ³å å (A.13) 

where , ,( )NM M k N N kz B E B E y= + , is non-negative since the matrix NB  (and thus its 

inverse 1
NB- ) is symmetric positive definite.  
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Appendix B: Proof of Proposition 3  

The proof uses relationships and notations introduced in Appendix A. Using (3) and 
(A.12), replacing NL  by the sensor configuration 1L  of the new sensor, using the sensor 

configuration 1 1(   )T T T
M ML L L+ = , and noting that 1A  and 1MA  in (A.2) are given 

respectively by  

 2 2
1 1 1A L L ss= S = +   (B.1) 

and  

 1 1

1

ˆ[0, ,0, ( )]M M

M

A L L Rss d
-

= S =    (B.2) 

where 2s  and 2ŝ  are the variances of the model prediction errors at the new sensor 
location and the location of the M  sensor in the configuration ML , respectively,  it can 

be readily shown that the information matrix ˆ ( )Q d  for a sensor configuration 

1 1(   )T T T
M ML L L+ =  takes the form:  

 1
1 , 1 1, 1 1 , 1 1,

1

ˆ ( ) ( ) [( ) ( )]
N

T
M M M k k M M k k

k

Q Q L B E B E B B E B Ed -

=

= + + +å   (B.3) 

Note that the right-hand-side of (B.2) is valid based on the assumption that the correlation 
length l  is small to the minimum distance D  between sensors on configuration ML , 

guaranteeing that the prediction errors between the new sensor (placed close to the M  
sensor) and the existing 1M -  sensors are uncorrelated. The matrix MA  is also diagonal 

due to the uncorrelated prediction errors between the sensors in the configuration ML .  

Using (A.5) for 1N = , the following relation holds 1
1 1
T T
M M NMB A A B-=- , where 

1 1 ( )B B dº  is a scalar given by (A.6) in the form  

 1 1
1 1 1 1[ ]T

M M MB A A A A- -= -   (B.4) 

Noting that 1A  is given by (B.1), 1MA  by (B.2) and that the M -th diagonal element of the 

inverse of MA  equals to 2 2ˆ1/[ ]ss + , the scalar 1 ( )B d  admits the representation  

 
12 2

2 2 2
1 2 2

ˆ
( ) ( ) 0

ˆ
B s R

s

s s
d s d

s

-é ù
ê ú= + - >ê ú+ë û

  (B.5) 

Substituting 1
1 1 1
T T
M M MB A A B-=-  from (A.5) into (B.3), noting that 1MA  is given by (B.2), 

also that 1 , ,
T

M M k M kA E xq=  and 1, ,
T

k N kE xq= , where ,M kx  and ,N kx  are respectively the 

responses of the M  sensor and the new 1M +  sensor, one readily derives that  

 1 1
ˆ ( ) ( ) ( ) ( )M MQ Q L B Gd d d= +   (B.6) 
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where 1 ( )MG d  a semi-positive definite matrix given by  

 1 , , , ,2 2 2 2
1

ˆ ˆ
( ) ( ( ) )( ( ) )

ˆ ˆ

N
T T

M M k N k M k N k
k

G R x x R x x
s sq q q q

ss ss
d d d

s s=

= -  + -  +
+ +å  (B.7) 

Introducing the vector , ,( )k N k M kx xq qu d = - , the matrix 1 ( )MG d  takes the form:  

1 , ,
1

2
, , , ,

1 1 1

( ) ( ) ( ) ( ) ( )

           ( ) ( ) [ ( ) ( ) ] ( ) ( )

N
T T

M M k k M k k
k

N N N
T T T T

M k M k M k k M k k k
k k k

G x x

x x x x

q q

q q q q

d d u d d u d

d d u d u d u d u d

=

= = =

é ù é ù= G  + G  +ê ú ê úë û ë û

= G   +G  +  +

å

å å å
(B.8) 

where ( )dG  is given by  

 
2 2

ˆ
( ) 1 ( ) 0

ˆ
R

s

ss
d d

s
G = - >

+
 (B.9) 

Note that the sum in the first term is independent of d . Also the elements of the response 
sensitivity vector ,M kxq  are expected to be large since these response sensitivities 

correspond to a sensor location in the configuration ML  and the methodology selects the 

locations with the highest response sensitivities. For sufficiently small d  compared to the 
characteristic length of the dynamic problem, the vector ,N kxq  at the new sensor 

location does not vary significantly from the vector ,M kxq  in the neighborhood sensor 

location. In this case, the vector ( )ku d  becomes sufficiently small and the first term in 

(B.8) dominates the other two terms.      

Using the fact that a correlation function ( )R d  attains the maximum at 0d= , for 

sufficiently small  1d  and 2d  with 1 2d d>  the following inequality 2 1( ) ( )R Rd d>  holds. 

Using (B.5) and (B.9), it is straightforward to show that for 1 2d d> , the following 

inequality holds 2 2
1 1 1 2 1 2( ) / ( ) ( ) / ( )B Bd d d dG >G . The last expression along with the fact 

that the first term dominates the right hand side of  (B.8) for sufficiently small distances 

1d  and 2d  determined by the characteristic length of the problem, results in 

1 1 1 1 2 2 1 2( ) ( ) ( ) ( )M MB G B Gd d d d-  to be a positive definite matrix. Applying (B.6) for 1d , 

noting that  

 1 1 2 1 2 1 1 1 1 1 2 1 2

2 1 1 1 1 1 2 1 2

ˆ ( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( )]

ˆ         ( ) [ ( ) ( ) ( ) ( )]

M M M M

M M

Q Q L B G B G B G

Q B G B G

d d d d d d d

d d d d d

= + + -

= + -
     (B.10) 

the validity of (8) follows immediately from the relation (6) with 0 2
ˆ ( )A Q dº  and 

0 1 1 1 1 1 2 1 2[ ( ) ( ) ( ) ( )]M MB B G B Gd d d dº - .  

It should be noted that for the nearly uncorrelated prediction error case, the correlation 
length l  is significantly smaller that the characteristic length of the problem, and the 
factor 2

1( ) / ( )Bd dG  tends to 2 2 1( )ss -+  independent of d , provided that d  is large 
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compared to the correlation length. In this case the dominant term in (B.8) is independent 
of d  within the characteristic length of the problem. Thus the decrease or increase of the 
information entropy does not depend on the first term and it is controlled on the second 
and third terms.    



Optimal Sensor Placement in Structural Dynamics 
 

 22 

References  

[1] N. Bleistein, R. Handelsman, Asymptotic Expansions for Integrals, Dover Publications, New 
York, 1986. 

[2] C. Papadimitriou, Optimal Sensor Placement Methodology for Parametric Identification of 
Structural Systems. Journal of Sound and Vibration 278(4) (2004) 923-947. 

[3] C. Papadimitriou, J.L.  Beck, S.K. Au, Entropy-based optimal sensor location for structural 
model updating. Journal of Vibration and Control 6(5) (2000) 781-800.  

[4] R.L. Fox, M.P. Kapoor, Rates of Changes of Eigenvalues and Eigenvectors, AIAA Journal 6 
(1968) 2426-2429.  

[5] R.B. Nelson, Simplified calculation of eigenvector derivatives. AIAA Journal 14(9) (1976) 
1201-1205. 

[6] S. Adhikari, M.I. Friswell, Eigenderivative analysis of asymmetric non-conservative systems. 
International Journal for Numerical Methods in Engineering 51(6) (2001) 709-733.  

References for Optimal Sensor Placement Methods 

[1] P. Shah, F.E. Udwadia, A methodology for optimal sensor locations for identification 
of dynamic systems. Journal of Applied Mechanics 45 (1978) 188-196.  

[2] K. Sobczyk, Theoretic information approach to identification and signal processing. In: Proc. 
of the IFIP Conference on Reliability and Optimisation of Structural Systems, 1987. 

[3] D.C. Kammer, Sensor placements for on orbit modal identification and correlation of large 
space structures. Journal of Guidance, Control and Dynamics 14 (1991) 251-259.  

[4] D.C. Kammer, Effects of noise on sensor placement for on-orbit modal identification of large 
space structures, Journal of dynamic systems, measurements and control - Transactions of the 
ASCE (1992) 114 (3) 436-443.  

[5] P.H. Kirkegaard, R. Brincker, On the optimal locations of sensors for parametric 
identification of linear structural systems. Mechanical Systems and Signal Processing 8 
(1994) 639-647.  

[6] F.E. Udwadia, Methodology for optimal sensor locations for parameter identification in 
dynamic systems. Journal of Engineering Mechanics (ASCE), 120(2) (1994) 368-390.  

[7] D.S. Li, H.N. Li, C.P. Fritzen, The connection between effective independence and modal 
kinetic energy methods for sensor placement, Journal of Sound and Vibration 305 (2007) 
945–955.  

[8] H.M. Chow, H.F. Lam, T. Yin, S.K. Au, Optimal sensor configuration of  
typical transmission tower for the purpose of structural model updating,  
Structural Control and Health Monitoring (2010) DOI: 10.1002/stc.372. 

[9] Z.H. Qureshi, T.S. Ng, G.C. Goodwin, Optimum experimental design for identification of 
distributed parameter systems, International Journal of Control 31 (1980) 21-29.  

[10] E. Heredia-Zavoni, R. Montes-Iturrizaga, L. Esteva, Optimal instrumentation of structures on 
flexible base for system identification. Earthquake Engineering and Structural Dynamics 
28(12) (1999) 1471-1482.   



Optimal Sensor Placement in Structural Dynamics 
 

 23 

[11] E. Heredia-Zavoni, L. Esteva, Optimal instrumentation of uncertain structural systems subject 
to earthquake motions. Earthquake Engineering and Structural Dynamics 27(4) (1998) 343-
362.   

[12] E.B. Flynn, M.D. Todd, A Bayesian approach to optimal sensor placement for structural 
health monitoring with application to active sensing. Mechanical Systems and Signal 
Processing 24 (2010) 891-903.  

[13] M. Azarbayejani, A.I. Eli-Osery, K.K. Choi, M.M. Reda Taha, A probabilistic approach for 
optimal sensor allocation in structural health monitoring. Smart Materials and Structures 17 
(2008) doi: 10.1088/0964-1726/17/5/055019.  

[14] C. Papadimitriou, J.L.  Beck, S.K. Au, Entropy-based optimal sensor location for structural 
model updating. Journal of Vibration and Control 6(5) (2000) 781-800.  

[15] C. Papadimitriou, Optimal Sensor Placement Methodology for Parametric Identification of 
Structural Systems. Journal of Sound and Vibration 278(4) (2004) 923-947. 

[16] K.V. Yuen, L.S. Katafygiotis, C. Papadimitriou, N.C. Mickleborough, Optimal sensor 
placement methodology for identification with unmeasured excitation. Journal of Dynamic 
Systems, Measurement and Control 123(4) (2001) 677-686.  

[17] C. Papadimitriou, Pareto Optimal Sensor Locations for Structural Identification. Computer 
Methods in Applied Mechanics and Engineering 194(12-16) (2005) 1655-1673. 

[18] P. Metallidis, G. Verros, S. Natsiavas, C. Papadimitriou, Identification, fault detection and 
optimal sensor location in vehicle suspensions. Journal of Vibration and Control 9 (2003) 
9(3-4) 337-359.  

[19] D.C. Kammer and L. Yao, Enhancement of on-orbit modal identification of large space 
structures through sensor placement. Journal of Sound and Vibration 171(1) (1994) 119-139.    

[20] D.S. Li, H.N. Li, C.P. Fritzen, A note on fast computation of effective independence through 
QR downdating for sensor placement, Mechanical Systems and Signal Processing 23 (2009) 
1160-1168.  

[21] H. Bedrossian, S.F. Masri, Optimal placement of sensors and shakers for modal 
identification, in: P.D. Spanos and G. Deodatis (Eds.), Computational Stochastic Mechanics, 
Millpress, Rotterdam, 2003, pp. 53-57.  

[22] N.M. Abdullah, A. Richardson, J. Hanif, Placement of Sensors/Actuators on Civil Structures 
Using Genetic Algorithms. Earthquake Engineering and Structural Dynamics 30(8) (2001) 
1167-1184.  

[23] L. Yao, W.A. Sethares, D.C. Kammer, Sensor placement for on orbit modal identification via 
a genetic algorithm. AIAA Journal 31 (1993) 1167-1169.  

[24] C. Papadimitriou, Applications of Genetic Algorithms in Structural Health Monitoring. Proc. 
5th World Congress on Computational Mechanics (http://wccm.tuwien.ac.at), Vienna, 
Austria), 2002.   

[25] J.L. Beck, L.S. Katafygiotis, Updating models and their uncertainties – I: Bayesian statistical   
framework. Journal of Engineering Mechanics (ASCE) 124(4) (1998) 455-461.   

[26] L.S. Katafygiotis, C. Papadimitriou, H.F. Lam, A probabilistic approach to structural model 
updating. International Journal of Soil Dynamics and Earthquake Engineering 17(7-8) (1998) 
495-507. 

[27] M.I. Friswell, J.E.T. Penny, S.D. Garvey, Parameter subset selection in damage location. 
Inverse Problems in Engineering 5 (1997) 189-215.  

 




