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Gaussian Distributions 

Exercise 1.  

The sum Z X Y   of two independent Gaussian random variables 2( , )X XX N  �  and 
2( , )Y YY N  �  is Gaussian with mean Z X Y     and variance 2 2 2  Z X Y    , i.e. 

2 2( , )X Y X YZ N     � .Equation Chapter (Next) Section 1 

 

Since X and Y are independent Gaussian random variables we can write: 
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In addition, the marginal distribution of variable Z is defined as: 

        f z f z x f x dx

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    (1.2) 

, where    f z x  is given by: 
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All we have to do now is to substitute expressions (1.1) and (1.3) into (1.2) and work out some algebraic 
calculations.  

 

 
    

    

2 2
2 2

1 1
2 2

2 2

2 2

1 1

2 2

1 1 1 1
exp  

2 22 2

y x
y x

z x x

y x

y x

y xx y

f z e e dx

z x x dx

 
 

 

 
  

             
   







 

 
      
 





  (1.4) 

  



Solved Examples                                                                                           Uncertainty Quantification 

Page 3 of 41 
 

Let us work with the exponent     
2 2
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We will now try to complete the square in the brackets so we add and subtract a term.  
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If we carefully carry out the algebraic calculations in the second and third term above we end up with: 
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Now let’s substitute expression (1.5) into the marginal distribution expression (1.4) to get: 
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Note that  B x  is a Gaussian distribution and therefore it must integrate to 1. Hence, equation (1.6) 

yields: 
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, which is nothing but a Gaussian distribution with mean  

z x y     

, and variance 

2 2

z x y     

 

Exercise 2.   

The sum Z X Y   of two Gaussian random variables 2( , )X XX N  �  and 2( , )Y YY N  �  is 

Gaussian with mean Z X Y     and variance 2 2 2  2Z X Y X Y       , where   is the correlation 

coefficient given by [ ] / ( )X YE XY   . Equation Section (Next) 

 

Solution: 

 

In the case of two dependent Gaussian random variables X ,Y  the sum Z X Y   is given by: 
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To continue we have to substitute the above expression (2.2) into (2.1) and cleverly carry out the integral 
so that we end up with a distribution in z. This part however, involves a great deal of algebraic calculations 
so we will skip it and present the result only for the sake of simplicity. The distribution that we end up with 
is the following: 
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Therefore, the variable Z is also a Gaussian with mean: 

 z x y      (2.4) 

, and variance: 

 2 2 2z x y x y         (2.5) 

Exercise 3.  

The mixture distribution is defined by
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components and iw  are mixture weights which are non-negative 0iw   and satisfy
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i
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w
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components ( )if x


 are probability distributions. Show that ( )f x


 is a probability distribution. Estimate the 

first and second moment of the mixture distribution in terms of the first and second moment of the mixture 
components. Estimate the variance of the mixture distribution. Equation Section (Next) 

 

Solution:  

 

a.  Integrating ( )f x

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But since the components ( )if x


 are probability distributions from definition we also have: 
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Combining (3.1) and (3.2) we get: 
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Which means that the mixture distribution ( )f x


 is also a probability distribution since it integrates to 1. 

 

b.  The first moment of a probability distribution is from definition 
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Let us define the first moments of the mixture components ( )if x


 as: 
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, with the k-th component being  
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Now we can estimate the first moment of the mixture distribution ( )f x


 as: 

 

     

 

1 2 1 2
1

1 2
1

    

  

n

m i i m
i

n

i i m
i

E x x f x dx dx dx x w f x dx dx dx

w x f x dx dx dx

     

     

  

   

    
 

 
 
 

     

   

Κ Κ Κ Κ
% % % % % %

Κ Κ
% %

  (3.5) 

And by combining expressions (3.4) and (3.5) we can estimate the first moment of the mixture distribution 
with respect to the first moments of the mixture components as: 
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, with the k-th component being 
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c.  The second moment of a probability distribution is defined as: 
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Again we define the second moments of the mixture components ( )if x


 as: 
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Hence, the second moment of the mixture distribution can be written as: 
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And by combining equations (3.8) and (3.9) we finally get: 
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Exercise 4.  

The mixture of Gaussian distributions is defined by
1
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f x w f x


  , where the mixture components

( )if x , 1, ,i n   are Gaussian, i.e. ( ) ( ; , )i i if x N x    and iw  are mixture weights which are non-

negative 0iw   and satisfy
1

1
n

i
i

w


 . Estimate the mean and the variance of the mixture distribution. Find 

the marginal distribution of a parameter jx  in x .Equation Section (Next) 

 

Solution: 

 

Recalling that the first and second distribution moments are essentially the mean and variance of the 
distribution respectively, we can use the expressions we derived in the previous Exercise for general 
distributions to determine the mixture’s mean and variance (covariance matrix).  
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a.  Mean: 

     i i iE x x f x dx




  % % % % %%
  (4.1) 

And recalling expression (3.6) the mean of the Gaussian mixture distributions can be written as: 

 

 

  
1

n
i

i
i

E x w



% % %

  (4.2) 

b.  Variance: 

        
T T

i i ix x x x f x dx   




           % % % % % %% % % %
  (4.3) 

Similarly, recalling expression (3.10) we can express the variance of the Gaussian mixture as: 

 
1

n

i i
i

w


     (4.4) 

Note that both   and i  are matrixes whom dimensions are m m . 

c.  Marginal Distribution 

 

Let’s define the marginal distribution of jx  in the mixture components as: 

   1 2 1 2 1 1, , ,i j i m j j mf x f x x x dx dx dx dx dx
 

 
 

  Κ Κ Κ Κ  

Then we can easily write the marginal distribution of jx  of the mixture distribution as: 

    
1

n

j i j
i

f x f x


   (4.5) 
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Prior System Analysis 

Exercise 1.  

Consider the mathematical model of a system represented by the equation 1 2 Y aX bX e   , where 1X  

and 2X  are uncertain parameters of the mathematical model of the system, Y R  is the output quantity 

of interest (QoI), and e R  represents the model error which is quantified by a Gaussian distribution

(0, )e N S� , where S R . The parameters 1X  and 2X  are assumed to be independent with mean 1  and

2 , respectively. Also the standard deviation of the parameters 1X  and 2X  are 1  and 2 , respectively. 

The uncertainty in the output QoI is quantified by the simplified measures of uncertainty such as the mean 

Y  and standard deviation Y . The variables a  and b  are known constants. Given the uncertainty in the 

parameters 1X  and 2X , find the uncertainty in the output QoI Y , i.e. find Y  and standard deviation Y . 

Equation Chapter (Next) Section 1 

 

Solution: 

 

The mathematical model can also be expressed by the following equivalent form: 

 Y A X e  
% %

  (1.1) 

, where  

  1

2

   ,   
X

A a b X
X

 
   

 % %
 

The mean Y  of the QoI can be calculated as: 

          1

2

0Y E Y E A X e A E X E e a b




 

          
 % % % % %

 

 1 2Y a b      (1.2) 

Similarly, the variance Y  of the QoI is: 
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    
   

 

2

2

Y

T T T T T T

T

T T T T T T

E Y E A X e A A X e A

E

e A A X A A e A A

A X X A A X e A X A e X A e

E

   

    



           



           

     
              

   

% % % % % %% %

% % % % % % %% % % % %

% % % % % % % % % % %%
 

     
    

2

T T T T

T T T T T

Y

T TE A A E A A E A E A

A E X X A E A X e A E X A E e X A E e

e X e  

 

           

                        
      % % % % % % %% % %

% % % % % % % % % % % %%

% % %
 

 

2 2 20 0 0 0T

Y

T

Y

T

Y Y YA A

A A

S

S





      

  

             
 

% %

% %

% %  

 
2 2 2 2 2

1 2z a b S       (1.3) 

 

Exercise 2. 

Consider the mathematical model of a physical process represented by the equation 1cos( 1)Y a X E  

where 1X  is the uncertain parameter of the mathematical model of the system, Y R  is the output quantity 

of interest (QoI), and E R  represents the model error which is quantified by a Gaussian distribution 
(0, )E N S� , where S R . The variable a  is known constant. The uncertainty in the output QoI is 

quantified by the simplified measures of uncertainty such as the mean Y  and standard deviation Y . Given 

the uncertainty in the parameter 1X , find the uncertainty in the output QoI Y  in the following cases. 

a. The parameter 1X  has mean 1 1   and standard deviation .  

b. The parameter 1X  is Gaussian with mean 1 1   standard deviation . Find the result for any 

other distribution of the uncertain variable 1X  with mean 1 1   and standard deviation .  

c. The parameter 1X  is uniform with upper and lower bounds 1 b  and 1 b . Use the analytical 

approximations based on Taylor series expansion up to the quadratic term. Also find the exact 

estimate of the mean Y  and standard deviation Y  and investigate the effect of level of the 

uncertainty in 1X  on the accuracy of the Taylor series expansion estimate by plotting the errors  

  | | /approx exact exact
Y Y Y    

  | | /approx exact exact
Y Y Y    
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 , as a function of b  ranging from 0 to 1. Comment on the results. Equation Section (Next) 

 

Solution: 

 

This is a non-linear prior distribution model. Any non-linear model can be written in the form: 

  Y g X E    

, where in this case     cos 1g X a X   . It can be easily proven that if  0,E N S:  then: 

  Y E g X       (2.1) 

, and: 

  22 2 2

YE g X S 
       (2.2) 

In order to evaluate expressions (2.1) and (2.2) however, we need the explicit expressions for both the non-

linear function  g x  but also for the distribution of the model parameter X ,   f X   

a.  If we are interested to quantify the uncertainty in the output quantity Y  without any further information 

about the distribution in X  then we have to proceed with a Taylor Series expansion of  g x . 

            
0 0

2
2

0 0 02

1

2
x x

dg x d g x
g x g x x x x x

dx dx
     Λ  (2.3) 

, also: 

            
0 0

2
2

22

0 0 02

1

2
x x

dg x d g x
g x g x x x x x

dx dx

 
      
 
 

Λ   (2.4) 

Using the above Taylor expansions, expressions (2.1) and (2.2)  become: 

            
0 0

2
22

0 0 02

1

2Y

x x

dg x d g x
E g x g x x x

dx dx
             (2.5) 
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  

                   
0 0 0

2 2 2

2 2
22 2 2

0 0 0 0 02

2 with

2

    ,     
Y Y

x x x

E g x

dg x dg x d g x
E g x g x g x x g x x

dx dx dx

S 

  

 

      



  
 
  

  

The central point 0x  in the Taylor series expansion is usually chosen to be the most probable value of 

parameter X . In this case, we will evaluate the Taylor expansions at the mean 0 x   . Doing so, 

simplifies the above expressions for the mean and variance in Y  to: 

    
2

2cos 1 1 cos 1 1 1
2 2Y Y

a
a a

           
 

  (2.6) 

 
      

 

2 2

2 2

2 2 2 2 2 2 2

2 2

2

2

cos 0 sin 0 cos 0

1

Y Y

Y Y

a

S a

a a S 

 





 

  

   


  (2.7) 

 

b.   Ambiguous question? 
 

c. In the case of a uniform prior distribution for X the exact uncertainty measures for the output QoI Y  
are calculated as follows: 

       
1

1

cos 1 cos 1
2

b
exact

Y
b

a
E g X a X f x dx X dx

b


 

 

           

  sinexact

Y

a
b

b
    (2.8) 

           

       

2 2 22 2 2 2 2

2 21
2 22 2 2

1

cos 1

sin 2
cos 1

2 2 2

exact exact exact

Y Y Y

b
exact exact

Y Y
b

E g X S a X f x dx S

ba a
X dx S b S

b b

  

 









         

 
        

 




 

         2
2

2

2

2 cos 2sin si

2

n

2
exact

Y

a b b b ba

b
S 


    (2.9) 

Now if we try to approximate these measures using a Taylor series expansion in  g x  like we 

did before, we will get: 
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    2

2

2

1

2
app

Y

d g x
g

dx


      (2.10) 

            
2 2

2

2

2 22 2app

Y

app

Y

dg x d g x
g g

dx dx
S

 

      
    
  

  (2.11) 

Now recall that for a uniform distribution with bounds  ,v w  the mean and variance are known to be: 

   221 1
            σ

2 12
v w w v      

Thus, the approximate expressions (2.10)-(2.11) for the mean and variance can be written as: 

 
2

1
6

app

Y

b
a    
 

  (2.12) 

  2 2 2 41

36
app

Y
a bS    (2.13) 

Now let us form the percentage errors between the exact and the approximate expressions for the mean and 

variance as follows: 

 

 

 

2 sin
1

6

sin

app ex

Y Y

ex

Y

bb
b

b

b

 






   (2.14) 

, and: 

 

      

      

4

2

2

cos 2sin sin1 1

2 2 36

cos 2sin sin1

2 2

app ex

Y Y

ex

Y

b b b b
b

b

b b b b

b

 



 





   (2.15) 

We would like to get an idea on how these percentage errors depend on the bound length 2b  of the uniform 

distribution of the input model parameter X  .  This dependence is shown in the two graphs below. The 
graphs are drown with respect to  b  .  



Solved Examples                                                                                           Uncertainty Quantification 

Page 15 of 41 
 

 

Figure 1. Percentage error between the exact and approximate expressions for the mean 

 

 

 

Figure 2. Percentage error between the exact and approximate expressions for the variance 

 

Since the uniform prior distribution has bounds  1 ,1b b   we can infer that increasing b  from 0 to 1 

we reduce the length of the prior’s support and thus increase uncertainty. We can see that if 0b   then 
the uniform prior’s bounds are such to make both percentage errors equal to zero. This means that in the 
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case of 0b   the exact and asymptotic expressions are essentially the same. In contrast, increasing b, 
increases the prior uncertainty and the percentage errors between the exact and asymptotic expressions for 

the mean and variance increase as well. In fact, in the extreme case of 1b   , where the prior distribution 
region degenerates into a single point the percentage error for the mean is 100%. In all cases, larger uniform 
prior bounds yield a smaller error between exact and asymptotic expressions. In the second graph it is easy 

to infer that larger error variances S  reduce the impact of the prior uncertainty and consequently reduce 
the percentage error.  
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Bayesian Inference and Posterior System Analysis 

Exercise 1. 

The posterior distribution of the parameters of a model is given by  

  2 2
1 2 1 2 1 2 1 2

1
( , | , ) exp 2 2 2 1

2
p D I                

 

Find the uncertainty region and plot it in the two-dimensional parameter space 1 2( , )  .  

Hint: Need to find the most probable point, the Hessian, the covariance matrix and then clearly plot the 
contour plots of the posterior distribution in the two-dimensional parameter space, indicate the principal 
direction of the ellipsoid, as well as the length of the uncertainty along the principal axes of the ellipsoid. 
Equation Chapter (Next) Section 1 

 

Solution: 

 

The posterior distribution can be written in the equivalent form: 

  2 2
1 2 1 2 1 2 1 2

1
( , | , ) exp 2 2 2 1

2
p D I A                

  (1.1) 

, where A  is a constant that is chosen so that the distribution integrates to 1. We next introduce the function 

 1 2,L    that is defined as the negative logarithm of the posterior distribution.  Thus, 

    2 2

1 2 1 2 1 2 1 2

1
, 2 2 2 1

2
L A                (1.2) 

We know that the most probable point  1 2
ˆ ˆ,   is the point that minimizes the above expression. Thus,  

 1 2

1 1

2
2 1

2

0 1 0 ˆ 0

ˆ 10 1 0

L

L

  
 

 


            
 

 

 

For the Hessian matrix we have: 
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  

2 2

2

1 1 2

1 2 2 2

2

2 1 2

1
,

1

L L

H
L L

   
 


  

  
             
    

  

We can now expand the L  function around the MPV using a Taylor series and retaining only up to the 
quadratic terms. Doing so, yields: 

      1 2 1 2 1 2

1ˆ ˆ, , ,
2

L L Q         (1.3) 

, where  

        1 2
ˆ ˆ ˆ,Q H      


    % % % % %

  (1.4) 

The spread of uncertainty around the MPV is determined by the contour plots of the posterior distribution. 
The expansion in (1.3) as well as the quadratic form in (1.4) permit us to write the posterior distribution in 
the following form: 

  1 2 1 2

1
( , | , ) exp ,

2
p D I Q       

  (1.5) 

Note however, that the contour plots of (1.5) are essentially the same as the contours of the quadratic 
form(1.4). We will now try to draw these contours so as to quantify the uncertainty in the posterior 

distribution. Recall that in order to draw the contours of  1 2,Q    we need to solve the eigenvalue 

problem for the Hessian matrix. The principal directions resemble the “directions” of the spread of 
uncertainty whereas the inverse of the eigenvalues represent the “intensity” of the spread along each 
direction. Hence, 

 Ĥ u u     % %
  (1.6) 

Solving this eigenvalue problem yields the following eigenvalues: 

 1

2

1

1

 
 

 
 

  (1.7) 

, and their respective eigenvectors: 

 
 
 

1

2

1,1

1,1

T

T

u

u



 
%

%

  (1.8) 

Now we can write the quadratic form in (1.4) in the following form: 
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   2 2 2 2

1 1 2 2

Ty y k y y k       
% %

  (1.9) 

The new coordinate system  1 2,y y  originates in the MPV and its directions coincide with the principal 

directions in(1.8). We are now ready to draw the contours that express the spread of uncertainty in the 
posterior distribution for different values of the parameter  . 

 

 

 

 

Figure 3. Contours that resemble the spread of uncertainty in the posterior PDF (μ=-0.9) 
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Figure 4. Contours that resemble the spread of uncertainty in the posterior PDF (μ=-0.5) 

 

Figure 5. Contours that resemble the spread of uncertainty in the posterior PDF (μ=0) 
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Figure 6. Contours that resemble the spread of uncertainty in the posterior PDF (μ=0.5) 

 

Figure 7. Contours that resemble the spread of uncertainty in the posterior PDF (μ=0.9) 
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Exercise 2. 

Consider the mathematical model of a physical process/system represented by the equation  

 1Y aX E   

, where 1X  is the uncertain parameter of the mathematical model of the system, Y R  is the output 

quantity of interest (QoI), and E R  represents the model error which is quantified by a Gaussian 

distribution (0, )E N S� , where S R  is known. Given the single measurement 0Ŷ y  

a. Find the posterior uncertainty in the model parameter 1X . The prior uncertainty in 1X  is 

quantified by  

i. a uniform distribution with very large bounds 

ii. a Gaussian distribution with mean   and standard deviation    

b. For the case (i), find the uncertainty in the output quantity of interest  

 Z bY    

, where the error term   is a Gaussian distribution with mean zero and variance 0S . Equation Section (Next) 

 

Solution: 

 

a.i. Assuming a uniform prior distribution for X  we have: 

   min max
max min

1
,  ,

0,            

X X X
X Xf X I

otherwise

   


 

Since the bounds 
m in m ax,X X  are taken to be very large, the region of uncertainty for the posterior 

distribution is assumed to be very small and contained within the support of the uniform prior. The 
posterior distribution according to Bayes theorem, is given by: 

      ˆ ˆ, ,

PriorPosterior Likelihood

f X Y I f Y X I f X I
 

  (2.1) 

Hence we only have to determine the likelihood. Based upon our single observation the likelihood is: 

     21 1ˆ, , exp
22

Y N aX S f Y X I Y aX
SS

      
�  

Therefore, the posterior PDF is analogous to: 
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        2 21 1 1 1ˆ ˆ ˆ, exp exp
2 22 2

f X Y I Y aX cst Y aX
S SS S 

                 
  (2.2) 

In this case where the prior distribution is uniform with very large bounds the posterior PDF coincides 
with the likelihood and: 

  
2

22

ˆ1 1ˆ, exp
22

Y
f X Y I X

SS 
 

 
  
    

       

  (2.3) 

a.ii. In the case of a Gaussian prior we have that: 

    2

2

1 1
, exp

22
f X I X 


     

  (2.4) 

However the expression for the likelihood remains the same as before and the posterior distribution 
according to  (2.1) is given by: 

 

     

   

2 2

2

2
2

1 1 1 1ˆ ˆ, , exp exp
2 22 2

ˆ
ˆ, , , ,

f X Y I Y aX X
SS

Y S
f X Y I N N

a a

 
 

  

              

 
  

 

  (2.5) 

, which means that the posterior PDF is the product of two Gaussians. Recall that the product of two 

Gaussian distributions with means 
1 2,   and variances 2 2

1 2,   is another Gaussian with mean and 

variance given by:  

 

1 2

2 2

1 2

2 2

1 2

2 2
1 1

2 2

 
 



 





   , 

 2

2 1 2

2 2

1 2

 


 



  

b. We already shown that in the case of a uniform prior, the PDF of the linear model  ,f Y X I   is a 

Gaussian distribution with mean aX  and variance S  . Now the model Z bY    with 

 00,N S :  is essentially the sum of two Gaussian distributions. We have already shown that the sum 

of two independent Gaussians is another Gaussian with mean the sum of the means and variance the sum 
of the variances. Thus it is straightforward to write: 

 0,Z N abX S S:  
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Exercise 3. 

Consider the mathematical model of a physical process/system represented by the equation  

 2Y aX E   

, where 1X  is the uncertain parameter of the mathematical model of the system, Y R  is the output 

quantity of interest (QoI), and E R  represents the model error which is quantified by a Gaussian 

distribution (0, )E N S� , where S R  is known. Given the single measurement 0Ŷ y ,  

a. Find the posterior uncertainty in the model parameter 1X  using Bayesian central limit theorem. 

The prior uncertainty in 1X  is quantified by a Gaussian distribution with mean   and standard 

deviation .  
b. Approximate the uncertainty in the output quantity of interest  

 Z bY    

, where the error term   is a Gaussian distribution with mean zero and variance 0S . 

Equation Section (Next) 

 

Solution: 

 

a.  We just have to repeat the process of determining the posterior distribution presented in the previous 
exercise but in this case the model is non-linear. Assuming a Gaussian prior we have: 

    2

2

1 1
, exp

22
f X I X 


     

  (3.1) 

The likelihood, given the single measurement 0Ŷ y  is given by: 

    22

0

1 1ˆ , exp
22

f Y X I y aX
SS

     
  (3.2) 

The posterior distribution using Bayes theorem is: 

      ˆ ˆ, , , ,f X Y I f Y X I f X I     

     2 22
0 2

1 1 1 1ˆ, , exp exp
2 22 2

f X Y I y aX X
SS

 
 

              
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      2 22
0 2

1 1ˆ, , exp
2 2

f X Y I y aX X
S

 


       
  (3.3) 

Let us define the function  L X  as: 

      2 22

0 2

1 1

2 2
L X y aX X

S



      (3.4) 

Now using (3.4) the posterior PDF in (3.3) can be written in the following form: 

   ˆ , , expf X Y I L X      

In order to proceed and approximate the posterior PDF using the CLT we need to determine the MPV. To 
do so: 

  ˆ arg minX L X  

 2

0

2
0

2
0

aX aX yX

S

L

X








  


 

Solving the above equation for X  however is not only rather difficult but also we will probably end up 

with a rather complex expression for ˆ X  . From now on we will assume that X̂  is known and the Hessian 
matrix in this univariate case evaluated at the MPV is: 

 2

0

2

ˆ2 3 1ˆ
a aX y

H X
S 

    


 

Let’s define   1
ˆH X



      . According to the CLT the posterior PDF can now be approximated by 

the following Gaussian distribution: 

    21 1ˆ ˆ, , , exp
22

f X Y X X 


       
  (3.5) 

, where recall that X̂  stands for the MPV. 

 

b.  Now to approximate the posterior uncertainty in the QoI Z bY   . Recall that the distribution in 

Y  is given by the likelihood in (3.2) which is a Gaussian on Y  with mean 2aX . Consequently, the 

QoI  Z bY    is the sum of two independent Gaussian random variables and its corresponding 

uncertainty can be quantified as: 
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  2

0,Z N abX S S:   (3.6) 

 

Exercise 4. 

Consider a mathematical model of a system represented by the difference equation  

 1( , )k kY g Y E   

, where E  is a Gaussian distribution, i.e. 
2(0, )E N � . Given the observations 

0 1 2 0
ˆ ˆ ˆ ˆ ˆ( , , , , ) { }N k ND Y Y Y Y Y    covering all time instances, we are interesting in updating the uncertainty 

in the variables   and 2 . Find the likelihood of the model parameters   and 2 .Equation Section (Next) 

 

Using Bayes theorem, the posterior uncertainty in   and 2  is given by: 

        2 2 2

0 0

ˆ ˆ, , , , ,k k
n n

f Y I f Y I f I     
 

   (4.1) 

The likelihood is essentially the distribution: 

   2

0

ˆ , ,k
n

f Y I 


  (4.2) 

We can write that: 

    2 2
1 2

1

ˆ ˆ ˆ ˆ, , , , ..., , ,k N
N

f Y I f Y Y Y I   


  

Due to the nature of the model (difference model) we have that: 

        2 2 2 2
1 1 2 1 0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , , , ,k N N N N
N

f Y I f Y Y I f Y Y I f Y Y I         
   

In terms of Gaussian distributions we can write: 

           2 2 2 2
1 2 0

0

ˆ , , , , , , , ,k N N
N

f Y I N g Y N g Y N g Y        
�   

      2 2
1

0
1

ˆ , , , ,
n

k i
N

i

f Y I N g Y   

�   (4.3) 
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Exercise 5. 

The posterior uncertainty in two parameters 1x  and 2x  is found to be Gaussian with mean ˆ (3,3)Tx   and 

covariance matrix
1

1
C



 

  
 

, where 1  1 

a. Plot the spread of uncertainty around the best estimate x̂  (that is, plot a contour plot 

corresponding to ( ) 1Q x  ), for values of   0,0.1,0.5,0.9  

Hint: Solve the eigenvalue problem C    and use the results in class to draw the contour 

plots. Note that H 1 C  and that u  and λ obtained from the eigenvalue problem Hu u  

developed in class are related to  and μ as follows: 

  u

  1



 

b. Also, estimate the uncertainty in the marginal distribution of 1x  or 2x . Can the uncertainty in 

the marginal distribution of  1x  or 2x  describe the spread of uncertainty in the two dimensional 

space 1 2( , )x x  of the two parameters?Equation Section (Next) 

 

Solution: 

 

a.  Recall that the Hessian matrix of the posterior distribution is from definition the inverse of the covariance 
matrix. Equivalently, the covariance matrix is obtained as the inverse of the Hessian. Thus, in this case 
where the covariance matrix is known we can derive the Hessian as: 

   1

2

11

11
H C




  
 


 


  (5.1) 

With the Hessian matrix known, we can write the quadratic form  Q x
%

 as: 

        ˆ ˆ
T

Q x x x H x x    
% % % % %

  (5.2) 

, where x̂
%

 stands for the most probable value. Now recall that the contour plots of the posterior distribution 

are essentially the contours of the quadratic term  Q x
%

 as we showed previously (Equations (1.1)-(1.5) 

at Exercise 1, Bayesian Inference and Posterior System Analysis Chapter). However, in order to plot the 
contours of (5.2) we first need to solve the eigenvalue problem for the Hessian to determine the principal 
directions and the eigenvalues. The latter is important to identify the location and “size” of uncertainty 
region. 
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The Eigen problem formulated as  H u u 
% %

 has the following solution: 

Eigenvalues: 1 2

1 1
      ,         

1 1
 

 
 

 
  (5.3) 

And the corresponding eigenvectors are: 

    1 21,1       ,         1,1u u  
% %

  (5.4) 

Recalling that the spread of uncertainty along the principal directions is given by the inverse of the 

corresponding eigenvalue, we can calculate the spread 1 2,   along the eigenvectors 1 2,u u
% %

 as: 

 1 21       ,         1         (5.5) 

Finally the contours are drawn and we summarize the different contours that correspond to different values 

of   for 1Q   in the graph below. The graph also indicates the principal directions as black bold vectors 

that originate at the most probable value (black point). 
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b.  According to the Central Limit theorem (CLT) we can locally approximate our unknown posterior PDF 
as a multivariate Gaussian distribution centered at the MPV with variance matrix C which are given. 
Hence: 

  
 

     1

2

1 1
ˆ ˆexp[ ]

22 det

T
p x x x C x x

C


     

% % % % %
  (5.6) 

The marginal distribution in either x1 or x2 can be obtained as: 

    1 1 2 2,p x p x x dx




    (5.7) 

We can easily prove however that the above integration equals to a Gaussian marginal distribution for x1 

 1 1 11
ˆ ,x N x C:  . In complete form, the marginal distribution for x1 is: 

    2

1 1

1111

1 1
exp[ 3 ]

22
p x x

CC
     (5.8) 

It is reasonable to assume that the marginal distribution for x2 will also be a Gaussian  2 2 22
ˆ ,x N x C: . 

These two marginal distributions however do not suffice to quantify the posterior uncertainty as they 
completely omit the correlation between the two parameters. Thus, the marginal distributions are unable to 

describe the spread of uncertainty in the two dimensional space 1 2( , )x x . 

 

 

 

 

Exercise 6. 

Inference of Acceleration of Gravity and Air Resistance Coefficient for a Falling Object 

Consider the mathematical model of a falling object with mass m , acceleration of gravity g  and air 

resistance force 2
resF m  , where   is the air resistance coefficient. Using Newton’s law, the 

equation of motion of the falling object is  

 
2( )
( )

d t
m mg m t

dt

    

, or equivalently  

 
2( ) ( )a t g t   
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Measurements for the acceleration and the velocity of the falling object are obtained at regular time 

intervals k t . The acceleration measurements are denoted by 1 2 1ˆ ˆ ˆ ˆ( , , , ) { }N k Na a a a   and the 

corresponding velocity measurements are denoted by 1 2 1ˆ ˆ ˆ ˆ( , , , ) { }N k N     . Given the observation 

data 1 2 1 2ˆ ˆ ˆˆ ˆ ˆ( , , , , , , , )N ND a a a       of the acceleration and velocity of the falling object at time 

instances , 2 , ,t t t N t    , respectively, we are interesting in estimating the uncertainty of the 

parameters g  and   of the system. Note that the measurements and the model predictions satisfy the 

model error equation  

 2ˆˆk k ka g E    

1, ,k N  , where the measurement error terms kE  are independent identically distributed (iid) and 

follow a zero-mean Gaussian distribution 2(0, )kE N � . The value of the variance  2  is given.  

Assume a uniform prior for the parameter set ( , )g   and derive the expressions for the  

1. Posterior PDF ( , | , , )p g D I  .  

2. The function ( , ) ln ( , | , , )L g p g D I     

3. The MPV (or best estimate) ˆˆ( , )g  of ( , )g   

4. The uncertainty in the parameter space ( , )g   

5. Derive the Gaussian asymptotic approximation for the posterior PDF of ( , | , , )p g D I  . Is the 

Gaussian representation of the posterior uncertainty exact or approximate for this case?  

6. Find the marginal distribution of the parameter  . Specifically,  

a. Give the uncertainty in   in terms of the mean and the standard deviation of the 

marginal distribution of  .  

b. Find the minimum number of data points required so that the uncertainty in   is less 

that a given value .  

7. Find the uncertainty in the resistance force 2
resF m   given the uncertainties in the parameters 

( , )g  :  

a. Compute the mean of resF  

b. Compute the standard deviation of resF  

c. Find the probability density function that describes the uncertainty in resF
Equation Section (Next) 

 

Solution: 
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a.  Given the set of independent observations 1 2 1 2ˆ ˆ ˆˆ ˆ ˆ( , , , , , , , )N ND a a a       of the acceleration 

and velocity of a falling object we are interested in updating the uncertainty in the model parameters ,g 
. To begin with we postulate a uniform prior distribution in these parameters so that: 

         min max min max
max min max min

1
, , ,

,    

0
otherwise

g g g
g gp g I

   


    



  (6.1) 

 

Given the model 2ˆˆk k ka g E    with 2(0, )kE N �  we can infer the likelihood as: 

 

    

    

2
2

2
1

2
2

2
1

1 1
ˆˆ, , , exp

22

1 1
ˆˆ, , , exp

22

N

i i
i

N

N i i
N i

p D g I a g

p D g I a g

  


  
 





       
      




  (6.2) 

 Now using Bayes theorem, the posterior PDF for the parameters ,g   can be found to be: 

     2
2

2
1

1
ˆˆ, , , exp

2

N

i i
i

p g D I a g  
 

      
   (6.3) 

b. Now the L  function is: 

        2
2

2
1

1
ˆˆ, ln , , , ,

2

N

k k
i

L g p g D I L g a g c    
 

            (6.4) 

c.  The MPV of the parameters will be found as     
,

ˆˆ, argmin ,
g

g L g


   . So: 

 

  

  

2

1
2

2 2
2

2

2

2

1

0
ˆˆ

0 ˆ ˆ

ˆ ˆˆ 0ˆ ˆˆ
0

0

0

N

i i
i

N

i i i
i

a gL

A Ng Ug

gU Va gL





 











  
      

      





 




  

, where: 
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2 2 2 4 2

1 1 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ   ,      ,      ,   Σ
N N N N

i i i i i
i i i i

A a U u V u a u
   

        

The MPV for the parameter set is the solution of the above system and it is found to be: 

 
 

 

2 2

2
2 2

2

2
2 2

ˆˆ ˆ ˆΣ

ˆ ˆ

ˆˆ ˆΣ

ˆ ˆ

ˆ

ˆ

U AV

U V

N

N

A

N

U

g

U V
 









  (6.5) 

d. To fully define the uncertainty in the parameter space we also need the covariance matrix. Let’s 
first determine the Hessian matrix though and then calculate the covariance matrix as the inverse of the 
Hessian.  

 
1

2 2
1

2
2 2

1 1 1 1

2 2

ˆ
ˆ

1
,

ˆ ˆ ˆ ˆ

N

Ni
i

i
i

N N N N

i i i i
i i i i

uN
N u

H g
u u u u

 


 





   

       
    
    
   
  




   
 

By defining 
1

ˆ ˆ
N

i
i

Y u


  we can write the Hessian in a more “clean” form as: 

 
2 2

ˆ1
ˆ ˆ

N Y
H

Y U

 
  

  
  (6.6) 

Now we can inverse the Hessian to find the covariance matrix as: 

    2 2 2

2ˆ ˆ

ˆ ˆ ˆ
1 U Y

NU Y Y
C

N

 
 
  

 
  

  
  (6.7) 

The most probable value and the covariance matrix completely define the uncertainty in the parameter 

space   ,g   . 

 

e. The asymptotic approximation for the posterior PDF according to the Bayesian CLT is the 
following Gaussian distribution: 
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  
 

     12 1 1
ˆ ˆ, , , exp

22 det

Tappp g D I x x C x x
C

 


        % % % %
  (6.8) 

, where  
g

x

 

  
 %

 . This asymptotic approximation for the posterior uncertainty is approximate. We can 

refer back to the exact expression for the posterior PDF in (6.3) to see that even if we carry out all algebraic 
calculations the two expressions are not equivalent. We know however that for a sufficiently large amount 
of measurements D  the two expressions are asymptotically equivalent.  

f. The marginal distribution in   can be obtained by the posterior PDF as: 

    2 2, , , , , ,p g D I p g D I dg   




    (6.9) 

If we substitute in the above integral the approximate expression we derived in (6.8) and if we carry out 

the integration we will find out that the marginal distribution in   is a Gaussian  22
ˆ ,N C :  : 

    2
2

2222

1 1 ˆ, , , exp
22

p g D I
CC

   


 
   

 
  (6.10) 

Therefore the uncertainty in   can be quantified by the simple measures of mean and standard deviation 

as  :  Gaussian with ˆ
   and 22C  . Analytical expressions for 22

ˆ,C   can be found in 

equations (6.5) and (6.7) above. 

To determine the minimum data points in order for the uncertainty in   to be less than a specified value 

   we write: 

    2 2 2 2 2

2

22 2ˆ ˆ ˆ ˆ
N N

NU Y U Y
C

N
  

 
  


 


  

 
2

2

2 2

1

ˆ

ˆ
N

Y

U
 




  (6.11) 

g. Since the model for the resistance force is of the form 2
resF m   and we know that 

 22
ˆ,N C :  we can rewrite the model as: 

 2ˆ
resF m      
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, where  22 0,N C :  . Recall that u  is known every time interval t  in terms of measurements

ˆ iu  . However, the MPV for    , ̂  as well as the variance both depend on the measurements 

ˆ ˆ,i iu a  as we showed in (6.5) and (6.7)  

To simplify things we could assume that the model can be equivalently written in the form: 

   2ˆ ˆ
res j j jj

F m       (6.12) 

, with 

 
2

2
2 2

ˆΣ̂

ˆ ˆ
ˆ

ˆ
j

j j j

j j

A Uj

jU V





 


  and

2 2 2 4 2

1 1 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ      ,      ,      ,   Σ
j j jN

j i j i j i j i i
i i i i

A a U u V u a u
   

       . 

Also,   220,j N C j � , where:    2 222 2ˆ ˆ
j j

j

j U
C j

Y  
  .  

All the above state that both the mean and variance for the resistance force vary in general when new data 

is available every time interval  t  .Despite that, we can determine the mean and variance of  resF  in a 

closed form as: 

 Mean:    
 

2
2

2
2 2

ˆˆ ˆΣˆˆ ˆ   ,  
ˆ

ˆ
ˆ

j j j
res j j

j j

j

j A U
F j m

VjU
  










   (6.13) 

 Variance:     2 2

2

2ˆ ˆres

j j

F

j

j Y
j

U



 

 
   (6.14) 

Recall that we denote with j the current time interval. Thus, we use the data from 0t    to  t j t   in 

order to determine the mean and variance. Alternatively we could calculate the mean and variance of the 
resistance force at the end of the experiment when all the date would be available and therefore the results 
would be independent of time.   

Each time interval j, the probability density function for the resistance force will be the following Gaussian: 

  
 

 2

22

1 1 ˆˆ ˆ, exp
22

j

j res j j res resp F u a F F
C j

     
  (6.15) 

The MPV and variance for   depend on j in the sense that once new data is available we can use it to 

update the MPV and variance. Apart from   however, the resistance force is an implicit time function 

since the velocity varies for different time intervals.  

  



Solved Examples                                                                                           Uncertainty Quantification 

Page 35 of 41 
 

Information Entropy 

Exercise 1.  

Estimate the information entropy for the exponential distribution ( ) exp( )p x x   , 0x   

Equation Chapter (Next) Section 1 

 

Solution: 

 

The Information entropy of a distribution is given by the following integral: 

        ln lnp x
X

I E p x p x p x dx      
%

%
% % % %

  (1.1) 

In the case of a univariate exponential distribution the above integral takes the form: 

     
0 0

e 1exp 1x

pI x xx dx     


          (1.2) 

Hence, for the exponential distribution we have that: 

 1pI     (1.3) 

 

Exercise 2. 

Show that the maximum entropy distribution defined within the interval [ , ]a b  is the uniform distribution. 

Equation Section (Next) 

 

Solution: 

 

We need to prove that the uniform distribution is the least informative form all other distributions defined 

within the interval  [ , ]a b .  The latter translates into the problem of determining the expression  p x
%

 that 

maximizes the information entropy within the desired support. Hence: 

 

    

 

ln

. .     1 0

p
X

b

a

Max I p x p x dx

s t p x dx

   
 

 





  (2.1) 
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Introducing Lagrange multipliers we can express the Lagrange function as: 

   (2.2) 

Let us introduce an arbitrary function  h x  that integrates to 1. That way we can rewrite the above 

equation as: 

           ln
b

a

L p x p x p x h x dx        (2.3) 

We can alternatively maximize the following functional 

           lnf p x p x p x h x      (2.4) 

Hence, 

 

    

   

10 ln 1 0

0 0

f
p x p x e

p

f
p x h x






      




   


  

In other words, the first equation states that the distribution we are looking for is a constant since   does 
not depend on  x . Taking this into consideration we can apply to it the constraint equation to find: 

 

 
1

1
b

a

p x c

c
b ap x dx

 
    


 

    1
 , ,p x x a b

b a
 


  (2.5) 

, which concludes the proof. The distribution that maximizes the information entropy given only that it is 
defined in the domain  [ , ]a b  is the uniform distribution.  
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Exercise 3. 

Show that the maximum entropy distribution given only the mean is the exponential distribution. 

Equation Section (Next) 

 

Solution: 

 

Just like we did before, the problem is formulated as: 

 

    

 

 

ln

. .    0

     1 0

p
X

X

X

Max I p x p x dx

s t xp x dx

p x dx



   
 

 

 







  (3.1) 

Introducing Lagrange multipliers, the Lagrange function can be written as: 

 
           

          

1 2

1 2 1 2

ln 1

ln

X X X

X

L p x p x p x dx xp x dx p x dx

L p x p x x p x dx

  

    

            
   

      

  


  (3.2) 

Doing again the same trick, introducing the function  h x  that integrates to 1 we can maximize the 

following expression: 

             1 2 1 2lnf p x p x x p x h x           (3.3) 

Assigning all derivatives to zero we end up with: 

 

    

   

   

1 2 1

1 2

1

2

0 ln 1

0

0

xf
p x x p x e

p

f
xp x h x

f
p x h x

  






 
      




  



  


  

If we demand that the exponential expression for  p x  satisfies the constraints we have: 
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1 2 1 2

1 2 1 2

1 11

2

1

1 1

1

1

1
1 1

x x

X

x x

X

x
xe dx e

e dx e

   

   

 




   



   



    

  





  (3.4) 

Let us support the distribution on the positive x axis just to be able to complete our calculations. Hence: 

 

1 2 1 2

1 1
2 2

1 2

1 2

1 11

2
00 1 0 1 1

1
1

1 01

0 1 0

1

1

1 1

x x

x

x
x

x
xe dx e

e
e e

e
e dx

   

 
 

 
 

 










   



 


 

 


   


    


   







  

, and also: 

 
1 2

1 1

2

11

2
11 0 0

01 1 11

1 0

1
1 1x

x x

x
e x

e e dx

e

 
 



 
  
  





  





 

      
  


14243

  

Finally, if we interpret the first equation as:  

   2 1

1 1 2 2 2

1
ln 1 1 ln 1 lne     


  

             
 

 

, then the distribution can be written as: 

   xp x e     (3.5) 

, which completes the proof. Therefore we proved that among all distributions with the same mean and 
defined in the positive axis, the least informative is the exponential distribution.  
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Markov Chain Monte Carlo 

Exercise 1.  

The posterior probability density function of a set of two parameters 
1 2( , )T    is Gaussian with mean 

0  and diagonal covariance matrix  

 
1 0

0 9

 
   

 
 

Let 
( )j  be the current sample in the Markov Chain Monte Carlo algorithm generated using a Metropolis-

Hasting algorithm. Following Metropolis-Hasting algorithm, let   be the candidate sample drawn from a 

uniform distribution centered at the current sample
( )j . Let

( ) (1,0)j T  . If ~ ([0,6],[0,2])U , is drawn 

from a uniform distribution with bounds [0, 6]  for the first component 1  and [0 , 2 ]  for the second 

component 2   

1. find the probability that the next sample in the chain will be ( 1) (0,1)j T     

2. find the probability that the next sample in the chain will be ( 1) (0,3)j T     

3. find the probability that the next sample in the chain will be ( 1) (3,0)j T     

Equation Chapter (Next) Section 1 

Solution: 

 

The proposal PDF for candidate points   is a uniform distribution such that ~ ([0,6],[0,2])U . In 

addition, the posterior PDF is a Gaussian with zero mean and covariance matrix    which is given. From 

the theory of the Metropolis-Hastings algorithm for Markov Chain – Monte Carlo Integration we know that 

in order to decide whether to accept or reject the candidate point   in the chain we have to evaluate the 

quotient: 

     
  

  
  

,

,

j

j

j j

p D I q
Q

p D I q

  
 

  
 %% %

%%
% %%

  (1.1) 

After we evaluate the quotient, we accept the candidate point with probability: 

      min 1,j ja Q   
% %% %

 

, or reject it with probability: 
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       1 max 1,1j ja Q     
% %% %

  

So, the next point in the chain will be: 

  

  
    

1
   with probability   

   with probability   1

j

j

j j

a

a

  


  



 



%% %
%

% %%

  (1.2) 

We have analytical expressions for the posterior and the proposal distribution which they are: 

   
2

2 2
1

1 1
, exp

6 2 3
jp D I

 


      
  %

  (1.3) 

      1 21 / 12  if   0,6  , and 0,2
,

0                                 otherwise
q D I

 


  
 
%

  (1.4) 

So: 

 

i. If we need the next sample in the chain to be ( 1) (0,1)j T    then: 

    
  

  
  

  
  

* *

*

*

1

0,1 ,,
1.55962

, 1,0 ,

Tj

j

Tj j

p D Ip D I q
Q

p D I q p D I

  
 

  
  %% %

%%
% %14243%

 

And therefore the probability that ( 1) (0,1)j T     will be the next point in the chain is: 

     min 1,1.55962 1ja    
%%

  

ii. . If we need the next sample in the chain to be ( 1) (0,3)j T    then: 

    
  

  
  

  
  

* *

*

*

1

0,3 ,,
1.

, 1,0 ,

Tj

j

Tj j

p D Ip D I q
Q

p D I q p D I

  
 

  
  %% %

%%
% %14243%

 

And therefore the probability that ( 1) (0,3)j T     will be the next point in the chain is: 
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     * min 1,1 1ja    
%%

  

iii. Finally, If we need the next sample in the chain to be ( 1) (3,0)j T    then: 

    
  

  
  

 
  

* *

*

*

1

, 3,0 ,
0.018

, 1,0 ,

j T

j

Tj j

p D I q p D I
Q

p D I q p D I

  
 

  
  %% %

%%
% %14243%

 

And therefore the probability that ( 1) (3,0)j T     will be the next point in the chain is: 

     * min 1,0.018 0.018ja    
%%

  

While the chain will remain in the previous point with a probability:  

   *1 0.982ja   
%%

  


